मराठी

∫ Sin 4 X Cos 7 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

`  ∫  sin 4x cos  7x  dx  `
बेरीज

उत्तर

` ∫  sin 4x  cos 7x  dx `
\[ = \frac{1}{2}\int2  \cos 7x \sin \text{4x dx}\]
\[ = \frac{1}{2}\int\left[ \text{sin }\left( 7x + 4x \right) - \text{sin} \left( 7x - 4x \right) \right]dx \left[ \therefore 2 \cos A \sin B = \sin \left( A + B \right) - \sin \left( A - B \right) \right]\]
\[ = \frac{1}{2}\int\left( \text{sin }\left( \text{11x} \right) - \text{sin} \left( 3x \right) \right) dx\]
\[ = \frac{1}{2}\left[ - \frac{\text{cos} \left( 11x \right)}{11} + \frac{\text{cos} \left( 3x \right)}{3} \right] + C\]
\[ = - \frac{\text{cos} \left( 11x \right)}{22} + \frac{\text{cos} \left( 3x \right)}{6}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.07 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.07 | Q 1 | पृष्ठ ३८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int \cos^7 x \text{ dx  } \]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int {cosec}^3 x\ dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int \sec^6 x\ dx\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×