Advertisements
Advertisements
प्रश्न
उत्तर
` ∫ sin 4x cos 7x dx `
\[ = \frac{1}{2}\int2 \cos 7x \sin \text{4x dx}\]
\[ = \frac{1}{2}\int\left[ \text{sin }\left( 7x + 4x \right) - \text{sin} \left( 7x - 4x \right) \right]dx \left[ \therefore 2 \cos A \sin B = \sin \left( A + B \right) - \sin \left( A - B \right) \right]\]
\[ = \frac{1}{2}\int\left( \text{sin }\left( \text{11x} \right) - \text{sin} \left( 3x \right) \right) dx\]
\[ = \frac{1}{2}\left[ - \frac{\text{cos} \left( 11x \right)}{11} + \frac{\text{cos} \left( 3x \right)}{3} \right] + C\]
\[ = - \frac{\text{cos} \left( 11x \right)}{22} + \frac{\text{cos} \left( 3x \right)}{6}\]
APPEARS IN
संबंधित प्रश्न
` ∫ {cosec x} / {"cosec x "- cot x} ` dx
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to