मराठी

∫ X + Sin X 1 + Cos X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]
बेरीज

उत्तर

\[\int\left( \frac{x + \sin x}{1 + \cos x} \right)dx\]
\[ = \int\left[ \frac{x}{1 + \cos x} + \frac{\sin x}{1 + \cos x} \right]dx\]
\[ = \int\left[ \frac{x}{2 \cos^2 \frac{x}{2}} + \frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \cos^2 \frac{x}{2}} \right]dx\]
\[ = \frac{1}{2}\int x_I \cdot \sec^2_{II} \frac{x}{2}dx + \int\tan \frac{x}{2}dx\]
\[ = \frac{1}{2}\left[ x \cdot \frac{\tan \left( \frac{x}{2} \right)}{\frac{1}{2}} - \int1 \times 2 \tan \left( \frac{x}{2} \right)dx \right] + \frac{\text{ log }\left| sec \frac{x}{2} \right|}{\frac{1}{2}} + C\]
\[ = x \tan \left( \frac{x}{2} \right) - \frac{\text{ log} \left| \sec \frac{x}{2} \right|}{\frac{1}{2}} + \text{ log} \frac{\left| \sec \frac{x}{2} \right|}{\frac{1}{2}} + C\]
\[ = x \tan \left( \frac{x}{2} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.25 | Q 24 | पृष्ठ १३३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int \cos^2 \frac{x}{2} dx\]

 


` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int x \text{ sin 2x dx }\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int {cosec}^4 2x\ dx\]


\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int x \sec^2 2x\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×