Advertisements
Advertisements
प्रश्न
\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]
उत्तर
Dividing numerator and denominator by cos2x we get
\[I = \int\frac{\sec^2 x}{4 \tan^2 x + 4 \tan x + 5}dx\]
\[\text{ Putting tan x = t}\]
\[ \Rightarrow \text{ sec}^2 \text{ x dx = dt }\]
\[ \therefore I = \int\frac{dt}{4 t^2 + 4t + 5}\]
\[ = \frac{1}{4}\int\frac{dt}{t^2 + t + \frac{5}{4}}\]
\[ = \frac{1}{4}\int\frac{dt}{t^2 + t + \frac{1}{4} - \frac{1}{4} + \frac{5}{4}}\]
\[ = \frac{1}{4}\int\frac{dt}{\left( t + \frac{1}{2} \right)^2 + 1^2}\]
\[ = \frac{1}{4} \times \tan^{- 1} \left( t + \frac{1}{2} \right) + C.......... \left[ \because \int\frac{1}{x^2 + a^2}dx = \frac{1}{a} \tan^{- 1} \frac{x}{a} + C \right]\]
\[ = \frac{1}{4} \tan^{- 1} \left( \frac{2t + 1}{2} \right) + C\]
\[ = \frac{1}{4} \tan^{- 1} \left( \frac{2 \tan x + 1}{2} \right) + C...........\left[ \because t = \tan x \right]\]
\[ = \frac{1}{4} \tan^{- 1} \left( \tan x + \frac{1}{2} \right) + C\]
APPEARS IN
संबंधित प्रश्न
\[\int \tan^2 \left( 2x - 3 \right) dx\]
\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]