मराठी

∫ 1 4 Sin 2 X + 4 Sin X Cos X + 5 Cos 2 X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]

बेरीज

उत्तर

\[\text{ Let  I } = \int\frac{1}{4 \sin^2 x + 4 \sin x \cdot \cos x + 5 \cos^2 x}dx\]

Dividing numerator and denominator by cos2x we get

\[I = \int\frac{\sec^2 x}{4 \tan^2 x + 4 \tan x + 5}dx\]

\[\text{ Putting tan x = t}\]

\[ \Rightarrow \text{ sec}^2 \text{ x  dx = dt }\]

\[ \therefore I = \int\frac{dt}{4 t^2 + 4t + 5}\]

\[ = \frac{1}{4}\int\frac{dt}{t^2 + t + \frac{5}{4}}\]

\[ = \frac{1}{4}\int\frac{dt}{t^2 + t + \frac{1}{4} - \frac{1}{4} + \frac{5}{4}}\]

\[ = \frac{1}{4}\int\frac{dt}{\left( t + \frac{1}{2} \right)^2 + 1^2}\]

\[ = \frac{1}{4} \times \tan^{- 1} \left( t + \frac{1}{2} \right) + C.......... \left[ \because \int\frac{1}{x^2 + a^2}dx = \frac{1}{a} \tan^{- 1} \frac{x}{a} + C \right]\]

\[ = \frac{1}{4} \tan^{- 1} \left( \frac{2t + 1}{2} \right) + C\]

\[ = \frac{1}{4} \tan^{- 1} \left( \frac{2 \tan x + 1}{2} \right) + C...........\left[ \because t = \tan x \right]\]

\[ = \frac{1}{4} \tan^{- 1} \left( \tan x + \frac{1}{2} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 57 | पृष्ठ २०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int x^3 \text{ log x dx }\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×