Advertisements
Advertisements
प्रश्न
\[\int x^3 \text{ log x dx }\]
बेरीज
उत्तर
\[\int x^3 \text{ log x dx }\]
\[\text{Taking log x as the first function and x^3 as the second function} . \]
\[ = \log x\int x^3 dx - \int\left( \frac{d}{dx}\log x\int x^3 dx \right)dx\]
\[ = \left( \log x \right)\frac{x^4}{4} - \int\frac{1}{x}\left( \frac{x^4}{4} \right)dx\]
\[ = \frac{x^4}{x} \log x - \frac{x^4}{16} + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1}{1 - \sin x} dx\]
\[\int\left( x + 2 \right) \sqrt{3x + 5} \text{dx} \]
\[\int\text{sin mx }\text{cos nx dx m }\neq n\]
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]
\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]
` ∫ sec^6 x tan x dx `
\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]
\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]
\[\int\frac{1}{\sin x \cos^3 x} dx\]
Evaluate the following integrals:
\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]
\[\int\frac{x^2 - 1}{x^2 + 4} dx\]
\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]
\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]
\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]
\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]
\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]
\[\int\frac{\log x}{x^n}\text{ dx }\]
\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2} \text{ dx }\]
\[\int {cosec}^3 x\ dx\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]
\[\int\left( e^\text{log x} + \sin x \right) \text{ cos x dx }\]
\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]
\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\frac{x^2 + 1}{x^2 - 1} dx\]
\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]
\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]
\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to
\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]
\[\int \tan^3 x\ dx\]
\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]
\[\int\sqrt{\text{ cosec x} - 1} \text{ dx }\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
\[\int x\sqrt{1 + x - x^2}\text{ dx }\]
\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]
\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]