मराठी

∫ 1 ( X + 1 ) ( X 2 + 2 X + 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]
बेरीज

उत्तर

\[\text{Let I} = \int\frac{dx}{\left( x + 1 \right) \left( x^2 + 2x + 2 \right)}\]
\[ = \int\frac{dx}{\left( x + 1 \right) \left[ x^2 + 2x + 1 + 1 \right]}\]
\[ = \int\frac{dx}{\left( x + 1 \right) \left[ \left( x + 1 \right)^2 + 1 \right]}\]
\[\text{Putting}\ x + 1 = t\]
\[ \Rightarrow dx = dt\]
\[\text{Now, integral becomes}\]
\[I = \int\frac{dt}{t \left[ t^2 + 1 \right]}\]
\[ = \int\frac{t \cdot dt}{t^2 \left( t^2 + 1 \right)}\]
\[\text{Again putting }t^2 = p\]
\[ \Rightarrow \text{2t dt }= dp\]
\[ \Rightarrow t dt = \frac{dp}{2}\]
\[\text{Now, integral becomes}\]
\[I = \frac{1}{2} \int\frac{dp}{p \left( p + 1 \right)}\]
\[ = \frac{1}{2}\int\frac{dp}{p^2 + p}\]
\[ = \frac{1}{2}\int\frac{dp}{p^2 + p + \frac{1}{4} - \frac{1}{4}}\]
\[ = \frac{1}{2}\int\frac{dp}{\left( p + \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}\]
\[ = \frac{1}{2} \left[ \frac{1}{2 \times \frac{1}{2}} \text{log }\left| \frac{p + \frac{1}{2} - \frac{1}{2}}{p + \frac{1}{2} + \frac{1}{2}} \right| \right] + C\]
\[ = \frac{1}{2} \text{log }\left| \frac{p}{p + 1} \right| + C\]
\[ = \frac{1}{2} \text{log }\left| \frac{t^2}{t^2 + 1} \right| + C\]
\[ = \frac{1}{2} \text{log }\left| \frac{\left( x + 1 \right)^2}{\left( x + 1 \right)^2 + 1} \right| + C\]
\[ = \text{log}\sqrt{\left| \frac{\left( x + 1 \right)^2}{\left( x + 1 \right)^2 + 1} \right|} + C\]
\[ = \text{log }\left| \frac{x + 1}{\sqrt{x^2 + 2x + 2}} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.09 [पृष्ठ ५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.09 | Q 67 | पृष्ठ ५९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


` ∫  tan^5 x   sec ^4 x   dx `

\[\int \cot^5 x  \text{ dx }\]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int x \cos x\ dx\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int \log_{10} x\ dx\]

 
` ∫  x tan ^2 x dx 

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int\frac{x}{x^3 - 1} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×