मराठी

∫ √ C O S E C X − 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

`  ∫ \sqrt{"cosec x"- 1}  dx `
बेरीज

उत्तर

`  ∫ \sqrt{"cosec x"- 1}  dx `
\[ = \int\sqrt{\frac{1}{\sin x} - 1}dx\]
\[ = \int\frac{\sqrt{1 - \sin x}}{\sqrt{\sin x}}dx\]
\[ = \int\frac{\sqrt{\left( 1 - \sin x \right) \left( 1 + \sin x \right)}}{\sqrt{\sin x \left( 1 + \sin x \right)}}dx\]
\[ = \int\frac{\sqrt{1 - \sin^2 x}}{\sqrt{\sin^2 x + \ sinx}}dx\]
` ∫ {cos  x  dx}/{\sqrt{sin^2 x + sin x}}`
\[\text{Let sin x} = t\]
` ⇒ cos  x   dx = dt  `

Now, `∫  { cos  x  dx }/\sqrt {sin^2  x + sin x} `
\[ = \int\frac{dt}{\sqrt{t^2 + t}}\]
\[ \int\frac{dt}{\sqrt{t^2 + t}}\]
\[ = \int\frac{dt}{\sqrt{t^2 + t + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}}\]
\[ = \int\frac{dt}{\sqrt{\left( t + \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}}\]
\[ = \text{ log }\left| \left( t + \frac{1}{2} \right) + \sqrt{\left( t + \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2} \right| + C\]
\[ = \text{ log }\left| t + \frac{1}{2} + \sqrt{t^2 + t} \right| + C\]
\[ = \text{ log }\left| \sin x + \frac{1}{2} + \sqrt{\sin^2 x + \sin x} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.18 [पृष्ठ ९९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.18 | Q 16 | पृष्ठ ९९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

`∫     cos ^4  2x   dx `


\[\int \cos^2 \text{nx dx}\]

` ∫   cos  3x   cos  4x` dx  

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

` ∫  sec^6   x  tan    x   dx `

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int \cot^4 x\ dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×