Advertisements
Advertisements
प्रश्न
उत्तर
` ∫ \sqrt{"cosec x"- 1} dx `
\[ = \int\sqrt{\frac{1}{\sin x} - 1}dx\]
\[ = \int\frac{\sqrt{1 - \sin x}}{\sqrt{\sin x}}dx\]
\[ = \int\frac{\sqrt{\left( 1 - \sin x \right) \left( 1 + \sin x \right)}}{\sqrt{\sin x \left( 1 + \sin x \right)}}dx\]
\[ = \int\frac{\sqrt{1 - \sin^2 x}}{\sqrt{\sin^2 x + \ sinx}}dx\]
` ∫ {cos x dx}/{\sqrt{sin^2 x + sin x}}`
\[\text{Let sin x} = t\]
` ⇒ cos x dx = dt `
Now, `∫ { cos x dx }/\sqrt {sin^2 x + sin x} `
\[ = \int\frac{dt}{\sqrt{t^2 + t}}\]
\[ \int\frac{dt}{\sqrt{t^2 + t}}\]
\[ = \int\frac{dt}{\sqrt{t^2 + t + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}}\]
\[ = \int\frac{dt}{\sqrt{\left( t + \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}}\]
\[ = \text{ log }\left| \left( t + \frac{1}{2} \right) + \sqrt{\left( t + \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2} \right| + C\]
\[ = \text{ log }\left| t + \frac{1}{2} + \sqrt{t^2 + t} \right| + C\]
\[ = \text{ log }\left| \sin x + \frac{1}{2} + \sqrt{\sin^2 x + \sin x} \right| + C\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
`∫ cos ^4 2x dx `