मराठी

∫ 3 X + 5 √ 7 X + 9 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]
बेरीज

उत्तर

\[\text{Let I }= \int\left( \frac{3x + 5}{\sqrt{7x + 9}} \right)dx\]
\[Putting\ 7x + 9 = t\]
\[ \Rightarrow x = \frac{t - 9}{7}\]

\[\text{and}\ 7dx = dt\]
\[ \Rightarrow dx = \frac{dt}{7}\]

\[\therefore I = \int\left( \frac{3\left( \frac{t - 9}{7} \right) + 5}{\sqrt{t}} \right)dt\]
\[ = \int\left( \frac{3}{7}\frac{t}{\sqrt{t}} - \frac{27}{7\sqrt{t}} + \frac{5}{\sqrt{t}} \right)\frac{dt}{7}\]


` = 3/(7× 7) ∫ t^{1/2} dt - 27/{7× 7 }   ∫  t ^{-1/2} dt + 5/7 ∫   t ^{-1/2}dt `
\[ = \frac{3}{7 \times 7}\left[ \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] - \frac{27}{7 \times 7}\left[ \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] + \frac{5}{7}\left[ \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] + C\]


\[ = \frac{2}{7 \times 7} t^\frac{3}{2} - \frac{27}{7 \times 7} \times \text{2 }   t^\frac{1}{2} + \frac{10\sqrt{t}}{7} + C\]
\[ = \frac{2}{7 \times 7} \left( 7x + 9 \right)^\frac{3}{2} - \frac{54}{7 \times 7} \left( 7x + 9 \right)^\frac{1}{2} + \frac{10}{7}\sqrt{7x + 9} + C \left[ \because t = 7x + 9 \right]\]
\[ = \frac{2}{7 \times 7} \left( 7x + 9 \right)^\frac{3}{2} + \left( 10 - \frac{54}{7} \right) \frac{\sqrt{7x + 9}}{7} + C\]
\[ = \frac{2}{7} \left( 7x + 9 \right)^\frac{3}{2} + \left( \frac{70 - 54}{7} \right) \frac{\sqrt{7x + 9}}{7} + C\]
\[ = \frac{2}{7 \times 7} \left( 7x + 9 \right)^\frac{3}{2} + \frac{16}{7 \times 7}\sqrt{7x + 9} + C\]
\[ = \frac{2}{7 \times 7}\left[ \left( 7x + 9 \right)^\frac{1}{2} \left[ 7x + 9 + 8 \right] \right] + C\]
\[ = \frac{2}{49}\left[ \left( 7x + 9 \right)^\frac{1}{2} \left( 7x + 17 \right) \right] + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.05 [पृष्ठ ३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.05 | Q 6 | पृष्ठ ३३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int x^3 \sin x^4 dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int x^2 \cos 2x\ \text{ dx }\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×