मराठी

∫ X ( X 2 − a 2 ) ( X 2 − B 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]
बेरीज

उत्तर

We have,

\[I = \int\frac{x dx}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)}\]

Putting `x^2 = t`

\[ \Rightarrow 2x\ dx = dt\]

\[ \Rightarrow x\ dx = \frac{dt}{2}\]

\[ \therefore I = \frac{1}{2}\int\frac{dt}{\left( t - a^2 \right) \left( t - b^2 \right)}\]

\[\text{Let }\frac{1}{\left( t - a^2 \right) \left( t - b^2 \right)} = \frac{A}{t - a^2} + \frac{B}{t - b^2}\]

\[ \Rightarrow \frac{1}{\left( t - a^2 \right) \left( t - b^2 \right)} = \frac{A \left( t - b^2 \right) + B \left( t - a^2 \right)}{\left( t - a^2 \right) \left( t - b^2 \right)}\]

\[ \Rightarrow 1 = A \left( t - b^2 \right) + B \left( t - a^2 \right)\]

Putting `t = b^2`

\[1 = A \times 0 + B \left( b^2 - a^2 \right)\]

\[ \Rightarrow B = \frac{1}{b^2 - a^2}\]

Putting `t = a^2`

\[1 = A \left( a^2 - b^2 \right) + B \times 0\]

\[ \Rightarrow A = \frac{1}{a^2 - b^2}\]

\[I = \frac{1}{2}\int\frac{dt}{\left( t - a^2 \right) \left( t - b^2 \right)}\]

\[ = \frac{1}{2 \left( a^2 - b^2 \right)}\int\frac{dt}{t - a^2} + \frac{1}{2 \left( b^2 - a^2 \right)}\int\frac{dt}{t - b^2}\]

\[ = \frac{1}{2 \left( a^2 - b^2 \right)} \log \left| t - a^2 \right| + \frac{1}{2 \left( b^2 - a^2 \right)} \log \left| t - b^2 \right| + C\]

\[ = \frac{1}{2 \left( a^2 - b^2 \right)} \left[ \log \left| t - a^2 \right| - \log \left| t - b^2 \right| \right] + C\]

\[ = \frac{1}{2 \left( a^2 - b^2 \right)} \left[ \log \left| \frac{t - a^2}{t - b^2} \right| \right] + C\]

\[ = \frac{1}{2 \left( a^2 - b^2 \right)} \log \left| \frac{x^2 - a^2}{x^2 - b^2} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 24 | पृष्ठ १७७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int \cos^2 \text{nx dx}\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int x^2 \sin^2 x\ dx\]

\[\int2 x^3 e^{x^2} dx\]

\[\int x^3 \cos x^2 dx\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int \sec^4 x\ dx\]


\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×