Advertisements
Advertisements
प्रश्न
\[\int2 x^3 e^{x^2} dx\]
बेरीज
उत्तर
\[\int2 x^3 \cdot e^{x^2} dx\]
\[ = \int x^2 \cdot \left( e^{x^2} \right) \cdot \text{ 2x dx }\]
` \text{ Let } x^2" = t `
\[ \Rightarrow \text{ 2x dx } = dt\]
\[ = \int t_I \cdot {e_{II}}^t dt\]
\[ = t \cdot e^t - \int1 \cdot e^t dt\]
\[ = \text{ t e}^t - e^t + C\]
\[ = \text{ x}^2 \text{ e}^{x^2} - e^{x^2} + C\]
\[ = e^{x^2} \left( x^2 - 1 \right) + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{x^6 + 1}{x^2 + 1} dx\]
\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]
\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]
\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]
\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]
\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]
\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]
\[\int\frac{1}{1 + \sqrt{x}} dx\]
\[\int\frac{x^2}{\sqrt{x - 1}} dx\]
` ∫ {1}/{a^2 x^2- b^2}dx`
\[\int\frac{1}{2 x^2 - x - 1} dx\]
\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]
\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]
\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]
\[\int\frac{1}{p + q \tan x} \text{ dx }\]
\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]
\[\int x^2 \text{ cos x dx }\]
\[\int \left( \log x \right)^2 \cdot x\ dx\]
\[\int {cosec}^3 x\ dx\]
\[\int x^2 \sin^{- 1} x\ dx\]
\[\int x^3 \tan^{- 1}\text{ x dx }\]
\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]
\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]
\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]
\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]
\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{ dx }\]
\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]
\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]
\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]
Evaluate the following integral:
\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]
\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]
\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to
\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]
\[\int \tan^3 x\ dx\]
\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]
\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]
\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]