मराठी

∫ { 1 + Tan X Tan ( X + θ ) } D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]
बेरीज

उत्तर

\[\text{Let I} = \int1 + \tan x \tan \left( x + \theta \right)dx\]
\[ = \int1 + \ tanx\left( \frac{\tan x + \tan \theta}{1 - \tan x \tan \theta} \right)dx\]
\[ = \int\frac{1 + \tan^2 x}{1 - \tan x \tan \theta}dx\]
\[ = \int\frac{\sec^2 x dx}{1 - \tan x \tan \theta}\]
\[Putting\ \ tan\ x = t\]
\[ \Rightarrow \text{sec}^2    x = \frac{dt}{dx} \]
\[ \Rightarrow dx = \frac{dt}{\sec^2 x}\]
\[ \therefore I = \int\frac{1}{1 - t \tan\theta}dt\]
\[ = \frac{- 1}{\tan \theta} \ln \left| 1 - t \tan \theta \right| + C \left[ \because \int\frac{1}{ax + b}dx = \frac{1}{a}\ln \left| ax + b \right| + C \right]\]
\[ = - \cot \theta \ln \left| 1 - \tan\ x \tan \theta \right| + C\]
\[ = \cot \theta \ln \left| \frac{1}{1 - \tan x \tan \theta} \right| + C\]
\[ = \cot \theta \ln \left| \frac{\ cosx \cos\theta}{\cos x \cos \theta - \sin x \sin \theta} \right| + C\]
\[ = \cot \theta \ln \left| \frac{\cos x}{\cos \left( x + \theta \right)} \right| + C' \left[ Let C' = C + \cot \theta \ln \cos\theta \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.08 [पृष्ठ ४८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.08 | Q 47 | पृष्ठ ४८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

`int 1/(cos x - sin x)dx`

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int x^2 \sin^2 x\ dx\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×