मराठी

∫ √ a 2 + X 2 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\sqrt{a^2 + x^2} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let  I }= \int {1_{II}  \cdot}\sqrt{a^2 {_I} + x^2} dx\]
\[ = \sqrt{a^2 + x^2} \int1 \text{ dx }- \int\left( \frac{d}{dx}\left( \sqrt{a^2 + x^2} \right) \int1 \text{ dx }\right)\text{ dx }\]
\[ = \sqrt{a^2 + x^2} \cdot x - \int\frac{1 \times 2x}{2 \sqrt{a^2 + x^2}} \cdot x \text{ dx }\]
\[ = \sqrt{a^2 + x^2} \cdot x - \int\left( \frac{x^2 + a^2 - a^2}{\sqrt{a^2 + x^2}} \right)\text{ dx }\]
\[ = x\sqrt{a^2 + x^2} - \int\sqrt{a^2 + x^2} dx + a^2 \int\frac{1}{\sqrt{a^2 + x^2}}\text{ dx }\]
\[ = x\sqrt{a^2 + x^2} - I + a^2 \int\frac{1}{\sqrt{a^2 + x^2}}dx\]
\[ \therefore 2I = x\sqrt{a^2 + x^2} + a^2 \text{ ln} \left| x + \sqrt{x^2 + a^2} \right|\]
\[ \Rightarrow I = \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \text{ ln} \left| x + \sqrt{x^2 + a^2} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 84 | पृष्ठ २०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


`∫     cos ^4  2x   dx `


\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

` ∫  tan^5 x   sec ^4 x   dx `

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×