मराठी

∫ X 2 X 2 + 6 X + 12 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I } = \int\frac{x^2 dx}{x^2 + 6x + 12}\]
\[\text{ Now }, \]

\[\text{ Therefore }, \]
\[\frac{x^2}{x^2 + 6x + 12} = 1 - \frac{\left( 6x + 12 \right)}{x^2 + 6x + 12} . . . . . \left( 1 \right)\]
\[\text { Let 6x } + 12 = A\frac{d}{dx} \left( x^2 + 6x + 12 \right) + B\]
\[ \Rightarrow 6x + 12 = A \left( 2x + 6 \right) + B\]
\[ \Rightarrow 6x + 12 = \left( 2A \right) x + 6A + B\]
\[\text{ Equating Coefficients of like terms }]\]
\[2A = 6\]
\[A = 3\]
\[6A + B = 12\]
\[18 + B = 12\]
\[B = - 6\]
\[ \therefore \frac{x^2}{x^2 + 6x + 12} = 1 - \frac{3 \left( 2x + 6 \right) - 6}{x^2 + 6x + 12}\]
\[I = \int\frac{x^2 dx}{x^2 + 6x + 12}\]
\[ = \int dx - 3\int\frac{\left( 2x + 6 \right) dx}{x^2 + 6x + 12} + 6\int\frac{dx}{x^2 + 6x + 12}\]
\[ = \int dx - 3 \int\frac{\left( 2x + 6 \right) dx}{x^2 + 6x + 12} + 6\int\frac{dx}{x^2 + 6x + 9 + 3}\]
\[ = \int dx - 3\int\frac{\left( 2x + 6 \right) dx}{x^2 + 6x + 12} + 6\int\frac{dx}{\left( x + 3 \right)^2 + \left( \sqrt{3} \right)^2}\]
\[ = x - 3 \text{ log } \left| x^2 + 6x + 12 \right| + \frac{6}{\sqrt{3}} \text{ tan }^{- 1} \left( \frac{x + 3}{\sqrt{3}} \right) + C\]
\[ = x - 3 \text{ log } \left| x^2 + 6x + 12 \right| + 2\sqrt{3} \text{ tan }^{- 1} \left( \frac{x + 3}{\sqrt{3}} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.2 [पृष्ठ १०६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.2 | Q 10 | पृष्ठ १०६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

`  ∫  sin 4x cos  7x  dx  `

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int \log_{10} x\ dx\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×