मराठी

∫ Tan − 1 √ 1 − X 1 + X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]
बेरीज

उत्तर

\[\text{ Let I } = \int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\text{ Putting  x } = \cos \theta\]

\[ \Rightarrow dx = - \text{ sin   θ   dθ}  \]

\[and\ \theta = \cos^{- 1} x\]

\[ \therefore I = \int \tan^{- 1} \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} \left( - \sin \theta \right) d\theta\]

\[ = \int \tan^{- 1} \sqrt{\frac{2 \sin^2 \frac{\theta}{2}}{2 \cos^2 \frac{\theta}{2}}} \left( - \sin \theta \right) d\theta\]

\[ = \int \tan^{- 1} \left( \tan \frac{\theta}{2} \right) \left( - \sin \theta \right) d\theta\]

\[ = - \frac{1}{2}\int \theta_I \sin_{II} \theta   d\theta\]

\[ = - \frac{1}{2}\left[ \theta\int \sin\theta d\theta - \int\left\{ \left( \frac{d}{d\theta}\theta \right)\int\sin \theta d\theta \right\}d\theta \right]\]

\[ = - \frac{1}{2} \left[ \theta\left( - \cos \theta \right) - \int 1 . \left( - \cos \theta \right) d\theta \right]\]

\[ = - \frac{1}{2} \left[ - \theta \cos \theta + \sin \theta \right] + C\]

\[ = - \frac{1}{2} \left[ - \theta . \cos \theta + \sqrt{1 - \cos^2 \theta} \right] + C\]

\[ = - \frac{1}{2}\left[ - \cos^{- 1} x . x + \sqrt{1 - x^2} \right] + C \left[ \because \theta = \cos^{- 1} x \right]\]

\[ = \frac{x \cos^{- 1} x}{2} - \frac{\sqrt{1 - x^2}}{2} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.25 | Q 57 | पृष्ठ १३४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int x e^x \text{ dx }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int x \cos^3 x\ dx\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×