मराठी

∫ E √ X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int e^\sqrt{x} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I } = \int e^\sqrt{x}  \text{ dx }\]
\[ = \int\sqrt{x} \cdot \frac{e^\sqrt{x}}{\sqrt{x}}dx\]
\[\text{ Let }\sqrt{x} = t\]
\[ \Rightarrow \frac{1}{2\sqrt{x}}dx = dt\]
\[ \Rightarrow \frac{dx}{\sqrt{x}} = 2 dt\]
\[ \therefore I = 2\int t_{} \cdot {e^t}_{} dt\]
`  " Taking t as the first function and e"^t" as the second function " .  `
\[ = 2\left[ t\int e^t dt - \int\left\{ \frac{d}{dt}\left( t \right)\int e^t dt \right\}dt \right] \]
\[ = 2\left[ t \cdot e^t - \int1 \cdot e^t dt \right] + C . . . (1)\]
\[\text{Substituting the value of t in eq}  \text{ (1) }\]
\[ = 2\left[ \sqrt{x} \text{ e }^\sqrt{x} - e^\sqrt{x} \right] + C\]
\[ = 2 \text{ e}^\sqrt{x} \left( \sqrt{x} - 1 \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.25 | Q 22 | पृष्ठ १३३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

` ∫   tan   x   sec^4  x   dx  `


\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int\cos\sqrt{x}\ dx\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int \sin^4 2x\ dx\]

\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×