मराठी

Integrate the Following Integrals: ∫ Sin 2 X Sin 4 X Sin 6 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]
बेरीज

उत्तर

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]
`= 1/2 ∫ (2   sin  2x   sin 4x )   sin 6x  dx `
\[ =  \frac{1}{2}\int\left[ \text{cos}\left( 2x - 4x \right) - \text{cos}\left( 2x + 4x \right) \right] \text{sin 6x dx}\]
\[ = \frac{1}{2}\int\left[ \text{cos}\left( 2x \right) - \text{cos}\left( 6x \right) \right] \text{sin 6x dx}\]
\[ = \frac{1}{2}\left[ \int\text{cos}\left( 2x \right)\text{sin}\left( 6x \right) dx - \int\text{cos}\left( 6x \right)\text{sin}\left( 6x \right) dx \right]\]
\[ = \frac{1}{4}\left[ \int2\text{cos}\left( 2x \right)\text{sin}\left( 6x \right) dx - \int2\text{cos}\left( 6x \right)\text{sin}\left( 6x \right) dx \right]\]
\[ = \frac{1}{4}\left\{ \int\left[ \text{sin}\left( 2x + 6x \right) - \text{sin}\left( 2x - 6x \right) \right] dx - \int\text{sin}\left( 12x \right) dx \right\}\]
\[ = \frac{1}{4}\left[ \int\text{sin}\left( 8x \right) dx + \int\text{sin}\left( 4x \right) dx - \int\text{sin}\left( 12x \right) dx \right]\]
\[ = \frac{1}{4}\left[ \frac{- \text{cos}\left( 8x \right)}{8} + \frac{- \text{cos}\left( 4x \right)}{4} + \frac{\text{cos}\left( 12x \right)}{12} \right] + c\]
\[ = - \frac{\text{cos}\left( 8x \right)}{32} - \frac{\text{cos}\left( 4x \right)}{16} + \frac{\text{cos}\left( 12x \right)}{48} + c\]

Hence, \[\int\text{sin  2x   sin 4x    sin 6x   dx }= - \frac{\cos\left( 8x \right)}{32} - \frac{\cos\left( 4x \right)}{16} + \frac{\cos\left( 12x \right)}{48} + c\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.07 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.07 | Q 5 | पृष्ठ ३८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int \sin^5 x\ dx\]

\[\int \cos^5 x\ dx\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×