Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{\sin \left( 2x \right)}{\left( a + b \cos 2x \right)^2}dx\]
\[\text{Let a + b }\cos2x = t\]
\[ \Rightarrow - \text{b }\sin \left( 2x \right) dx \times 2 = dt\]
\[ \Rightarrow \sin \left( 2x \right) dx = \frac{- dt}{2b}\]
\[Now, \int\frac{\sin \left( 2x \right)}{\left( a + b \cos 2x \right)^2}dx\]
\[ = - \frac{1}{2b}\int\frac{dt}{t^2}\]
\[ = \frac{- 1}{2b}\int t^{- 2} dt\]
\[ = \frac{- 1}{2b}\left[ \frac{t^{- 2 + 1}}{- 2 + 1} \right] + C\]
\[ = \frac{1}{2b} \times \frac{1}{t} + C\]
\[ = \frac{1}{2b \left( a + b \cos 2x \right)} + C\]
APPEARS IN
संबंधित प्रश्न
\[\int\sqrt{x}\left( 3 - 5x \right) dx\]
\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]
Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .
Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .