Advertisements
Advertisements
प्रश्न
\[\int\frac{\log \left( \log x \right)}{x} dx\]
बेरीज
उत्तर
\[\int\frac{\log \left( \log x \right)}{x}dx\]
` "Taking log log x as the first function and "1/x "as the second function" . `
\[ = \text{ log }\log x\int\frac{1}{x}dx - \int\left\{ \frac{d}{dx} \text{ log }\left( \log x \right)\int\frac{1}{x}dx \right\}dx\]
\[ = \log x . \text{ log }\left( \log x \right) - \int\frac{1}{x \log x}\left( \log x \right)dx\]
\[ = \log x . \text{ log }\left( \log x \right) - \int\frac{1}{x}dx\]
\[ = \log x . \text{ log }\left( \log x \right) - \log x + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\sqrt{x}\left( 3 - 5x \right) dx\]
\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]
\[\int \left( \tan x + \cot x \right)^2 dx\]
\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]
\[\int\frac{x^3}{x - 2} dx\]
\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]
\[\int\frac{1}{ x \text{log x } \text{log }\left( \text{log x }\right)} dx\]
\[\int x^3 \sin x^4 dx\]
\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]
\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]
\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]
\[\int \sin^5 x \cos x \text{ dx }\]
Evaluate the following integrals:
\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]
\[\int\frac{e^x}{1 + e^{2x}} dx\]
\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]
\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]
` ∫ \sqrt{"cosec x"- 1} dx `
\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]
\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]
\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]
`int"x"^"n"."log" "x" "dx"`
\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2} \text{ dx }\]
\[\int x \sin x \cos 2x\ dx\]
\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]
\[\int\sqrt{x^2 - 2x} \text{ dx}\]
\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]
\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{ dx }\]
\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]
\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]
\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]
\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]
\[\int\sin x \sin 2x \text{ sin 3x dx }\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\sqrt{\frac{a + x}{x}}dx\]
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]
\[\int x^3 \left( \log x \right)^2\text{ dx }\]
\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]