मराठी

∫ √ X ( 3 − 5 X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 

बेरीज

उत्तर

\[\int\sqrt{x}\left( 3 - 5x \right)dx\]
\[ = \int x^\frac{1}{2} \left( 3 - 5x \right)dx\]
\[ = \int\left( 3 x^\frac{1}{2} - 5 x^\frac{3}{2} \right)dx\]
\[ = 3\left[ \frac{x^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] - 5\left[ \frac{x^\frac{3}{2} + 1}{\frac{3}{2} + 1} \right] + C\]
\[ = 2 x^\frac{3}{2} - 2 x^\frac{5}{2} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.02 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.02 | Q 15 | पृष्ठ १५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int \cos^5 x \text{ dx }\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int \cos^5 x\ dx\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int \sec^6 x\ dx\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×