Advertisements
Advertisements
Question
\[\int\sqrt{x}\left( 3 - 5x \right) dx\]
Sum
Solution
\[\int\sqrt{x}\left( 3 - 5x \right)dx\]
\[ = \int x^\frac{1}{2} \left( 3 - 5x \right)dx\]
\[ = \int\left( 3 x^\frac{1}{2} - 5 x^\frac{3}{2} \right)dx\]
\[ = 3\left[ \frac{x^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] - 5\left[ \frac{x^\frac{3}{2} + 1}{\frac{3}{2} + 1} \right] + C\]
\[ = 2 x^\frac{3}{2} - 2 x^\frac{5}{2} + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{1}{1 - \sin x} dx\]
\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2} \text{dx} \]
\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]
\[\int \tan^{3/2} x \sec^2 \text{x dx}\]
\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]
\[\int x^2 \sqrt{x + 2} \text{ dx }\]
\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx }\]
` ∫ tan^5 x sec ^4 x dx `
` ∫ tan^5 x dx `
\[\int \sin^3 x \cos^6 x \text{ dx }\]
\[\int \cos^7 x \text{ dx } \]
\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]
\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]
` ∫ \sqrt{"cosec x"- 1} dx `
\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]
\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]
\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]
\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]
\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]
\[\int x \sin^3 x\ dx\]
\[\int \cos^3 \sqrt{x}\ dx\]
\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]
\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]
\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]
\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]
\[\int\frac{1}{1 + x + x^2 + x^3} dx\]
\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]
\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]
\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]
` \int \text{ x} \text{ sec x}^2 \text{ dx is equal to }`
\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]
\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]
\[\int \tan^5 x\ \sec^3 x\ dx\]
\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]
\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]