English

∫ 6 X + 5 √ 6 + X − 2 X 2 Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]
Sum

Solution

\[\int\frac{\left( 6x + 5 \right) dx}{\sqrt{6 + x - 2 x^2}}\]
\[\text{ Let  6x + 5 = A}\frac{d}{dx}\left( 6 + x - 2 x^2 \right) + B\]
\[ \Rightarrow 6x + 5 = A \left( - 4x + 1 \right) + B\]
\[ \Rightarrow 6x + 5 = - 4A \text{ x }+ \left( A + B \right)\]
\[\text{Equating coefficients of like terms}\]
\[ - 4A = 6\]
\[ \Rightarrow A = - \frac{3}{2}\]
\[ \text{ and}\ A + B = 5\]
\[ \Rightarrow - \frac{3}{2} + B = 5\]
\[ \Rightarrow B = 5 + \frac{3}{2}\]
\[ \Rightarrow B = \frac{13}{2}\]
\[\text{ Then, 6x + 5 }= - \frac{3}{2} \left( - 4x + 1 \right) + \frac{13}{2}\]
\[ \therefore \int\frac{\left( 6x + 5 \right)}{\sqrt{6 + x - 2 x^2}}\text{ dx } = \int\left( \frac{\frac{- 3}{2}\left( - 4x + 1 \right) + \frac{13}{2}}{\sqrt{6 + x - 2 x^2}} \right)\text{ dx }\]
\[ = - \frac{3}{2}\int\frac{\left( - 4x + 1 \right)}{\sqrt{6 + x - 2 x^2}} \text{ dx }+ \frac{13}{2}\int\frac{1}{\sqrt{6 + x - 2 x^2}}\text{ dx }\]
\[\text{  Putting  6 + x - 2 x}^2 =\text{  t   in   the  Ist  integral}\]
\[ \Rightarrow \left( - 4x + 1 \right) \text{ dx } = dt\]
\[ \therefore \int\frac{\left( 6x + 5 \right)}{\sqrt{6 + x - 2 x^2}}\text{ dx }= - \frac{3}{2}\int\frac{1}{\sqrt{t}}dt + \frac{13}{2 \times \sqrt{2}}\int\frac{1}{\sqrt{3 + \frac{x}{2} - x^2}}\text{ dx }\]
\[ = - \frac{3}{2}\int t^{- \frac{1}{2}} \cdot dt + \frac{13}{2\sqrt{2}}\int\frac{1}{\sqrt{3 + \frac{x}{2} - x^2 - \left( \frac{1}{4} \right)^2 + \left( \frac{1}{4} \right)^2}}\text{ dx }\]
\[ = - \frac{3}{2}\int t^{- \frac{1}{2}} \cdot dt + \frac{13}{2\sqrt{2}}\int\frac{1}{\sqrt{3 + \frac{1}{16} - \left( x - \frac{1}{4} \right)^2}}\text{ dx }\]
\[ = - \frac{3}{2}\int t^{- \frac{1}{2}} \cdot dt + \frac{13}{2\sqrt{2}}\int\frac{1}{\sqrt{\left( \frac{7}{4} \right)^2 - \left( x - \frac{1}{4} \right)^2}}\text{ dx }\]
\[ = - 3 \left[ t^\frac{1}{2} \right] + \frac{13}{2\sqrt{2}} \times \sin^{- 1} \left( \frac{x - \frac{1}{4}}{\frac{7}{4}} \right) + C .............\left[ \because \int\frac{1}{\sqrt{a^2 - x^2}}dx = \sin^{- 1} \frac{x}{a} + C \right]\]
\[ = - 3 \sqrt{6 + x - 2 x^2} + \frac{13}{2\sqrt{2}} \times \sin^{- 1} \left( \frac{x - \frac{1}{4}}{\frac{7}{4}} \right) + C\]
\[ = - 3\sqrt{6 + x - 2 x^2} + \frac{13}{2\sqrt{2}} \sin^{- 1} \left( \frac{4x - 1}{7} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 75 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

` ∫   tan   x   sec^4  x   dx  `


\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

`int 1/(cos x - sin x)dx`

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int x \text{ sin 2x dx }\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int \cos^3 (3x)\ dx\]

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int \cot^4 x\ dx\]

\[\int \cos^5 x\ dx\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int \log_{10} x\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×