English

∫ √ a + X X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\sqrt{\frac{a + x}{x}}dx\]
 
Sum

Solution

\[\text{ Let I } = \int\sqrt{\frac{a + x}{x}}dx\]
\[ = \int\frac{\sqrt{\left( a + x \right) \left( a + x \right)}}{\sqrt{x \left( a + x \right)}}\]
\[ = \int\left( \frac{a + x}{\sqrt{x^2 + ax}} \right)dx\]
\[ = a\int\frac{1}{\sqrt{x^2 + ax}}\text{ dx} + \int\frac{x}{\sqrt{x^2 + ax}}\text{ dx}\]
\[ = a\int\frac{1}{\sqrt{x^2 + ax + \left( \frac{a}{2} \right)^2 - \left( \frac{a}{2} \right)^2}}\text{ dx} + \int\frac{x}{\sqrt{x^2 + ax}}\text{ dx}\]
\[ = a\int\frac{1}{\sqrt{\left( x + \frac{a}{2} \right)^2 - \left( \frac{a}{2} \right)^2}}\text{ dx}+ \frac{1}{2}\int\frac{2x}{\sqrt{x^2 + ax}}\text{ dx}\]
\[ = a\int\frac{1}{\sqrt{\left( x + \frac{a}{2} \right)^2 - \left( \frac{a}{2} \right)^2}}\text{ dx}+ \frac{1}{2}\int\left( \frac{2x + a - a}{\sqrt{x^2 + ax}} \right)\text{ dx}\]
\[ = a\int\frac{1}{\sqrt{\left( x + \frac{a}{2} \right)^2 - \left( \frac{a}{2} \right)^2}}\text{ dx } + \frac{1}{2}\int\frac{\left( 2x + a \right)}{\sqrt{x^2 + ax}}\text{ dx  }- \frac{a}{2}\int\frac{1}{\sqrt{x^2 + ax}}\text{ dx }\]
\[ = \frac{a}{2}\int\frac{1}{\sqrt{\left( x + \frac{a}{2} \right)^2 - \left( \frac{a}{2} \right)^2}}\text{ dx } + \frac{1}{2}\int\frac{\left( 2x + a \right)}{\sqrt{x^2 + ax}} \text{ dx }\]
\[\text{ Putting  x}^2 + ax = \text{ t in the Ist integral} \]
\[ \Rightarrow \left( 2x + a \right) dx = dt\]
\[ \therefore I = \frac{a}{2}\int\frac{1}{\sqrt{\left( x + \frac{a}{2} \right)^2 - \left( \frac{a}{2} \right)^2}}dx + \frac{1}{2}\int\frac{1}{\sqrt{t}}dt\]
\[ = \frac{a}{2} \text{ ln  }\left| x + \frac{a}{2} + \sqrt{x^2 + ax} \right| + \frac{1}{2} \times 2\sqrt{t} + C .................\left[ \because \int\frac{1}{\sqrt{x^2 - a^2}}dx = \text{ ln}\left| x + \sqrt{x^2 - a^2} \right| + C \right]\]
\[ = \frac{a}{2} \text{ ln } \left| x + \frac{a}{2} + \sqrt{x^2 + ax} \right| + \sqrt{x^2 + ax} + C ..........\left[ \because t = x^2 + ax \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 74 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×