Advertisements
Advertisements
Question
Options
- \[\frac{- e^{- x}}{e^x + e^{- x}} + C\]
- \[- \frac{1}{e^x + e^{- x}} + C\]
- \[\frac{- 1}{\left( e^x + 1 \right)^2} + C\]
- \[\frac{1}{e^x - e^{- x}} + C\]
Solution
\[ = \int\frac{2 dx}{\left( e^x + \frac{1}{e^x} \right)^2}\]
\[ = 2\int\frac{e^{2x} dx}{\left( e^{2x} + 1 \right)^2}\]
\[\text{Let }e^{2x} + 1 = t\]
\[ \Rightarrow e^{2x} \cdot 2 dx = dt\]
\[ \Rightarrow e^{2x} \cdot dx = \frac{dt}{2}\]
\[ \therefore I = 2 \times \frac{1}{2}\int\frac{dt}{t^2}\]
\[ = - \frac{1}{t} + C\]
\[ = - \frac{1}{e^{2x} + 1} + C ...............\left( \because t = e^{2x} + 1 \right)\]
Dividing numerator and denominator by ex
\[\Rightarrow I = \frac{- \frac{1}{e^x}}{e^x + \frac{1}{e^x}}\]
\[ = \frac{- e^{- x}}{e^x + e^{- x}} + C\]
APPEARS IN
RELATED QUESTIONS
` ∫ {cosec x} / {"cosec x "- cot x} ` dx
\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]
\[\int\text{ cos x cos 2x cos 3x dx}\]
\[\int \sec^4 x\ dx\]
Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]