English

∫ 2 ( E X + E − X ) 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

Options

  • \[\frac{- e^{- x}}{e^x + e^{- x}} + C\]
  • \[- \frac{1}{e^x + e^{- x}} + C\]
  • \[\frac{- 1}{\left( e^x + 1 \right)^2} + C\]
  • \[\frac{1}{e^x - e^{- x}} + C\]
MCQ

Solution

\[\frac{- e^{- x}}{e^x + e^{- x}} + C\]
 
 
\[\text{Let }I = \int\frac{2 dx}{\left( e^x + e^{- x} \right)^2}\]

\[ = \int\frac{2 dx}{\left( e^x + \frac{1}{e^x} \right)^2}\]

\[ = 2\int\frac{e^{2x} dx}{\left( e^{2x} + 1 \right)^2}\]

\[\text{Let }e^{2x} + 1 = t\]

\[ \Rightarrow e^{2x} \cdot 2 dx = dt\]

\[ \Rightarrow e^{2x} \cdot dx = \frac{dt}{2}\]

\[ \therefore I = 2 \times \frac{1}{2}\int\frac{dt}{t^2}\]

\[ = - \frac{1}{t} + C\]

\[ = - \frac{1}{e^{2x} + 1} + C ...............\left( \because t = e^{2x} + 1 \right)\]

Dividing numerator and denominator by ex

\[\Rightarrow I = \frac{- \frac{1}{e^x}}{e^x + \frac{1}{e^x}}\]

\[ = \frac{- e^{- x}}{e^x + e^{- x}} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - MCQ [Page 201]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
MCQ | Q 21 | Page 201

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int \sec^4 x\ dx\]


\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×