Advertisements
Advertisements
Question
\[\int\sqrt{x^2 - 2x} \text{ dx}\]
Sum
Solution
\[I = \int\sqrt{x^2 - 2x}dx\]
\[\Rightarrow I = \int\sqrt{x^2 - 2x + 1 - 1}\text{ dx}\]
\[ \Rightarrow I = \int\sqrt{(x - 1 )^2 - 1^2}dx\]
\[ \because \int\sqrt{x^2 - a^2}dx = \frac{x}{2}\sqrt{x^2 - a^2} - \frac{a^2}{2}\text{ ln}\left( \left| x + \sqrt{x^2 - a^2} \right| \right) + c\]
\[ \therefore I = \frac{(x - 1)}{2}\sqrt{(x - 1 )^2 - 1} - \frac{1}{2}\text{ ln}\left| \left( x - 1 \right) + \sqrt{x^2 - 2x} \right| + c\]
\[ \Rightarrow I = \int\sqrt{(x - 1 )^2 - 1^2}dx\]
\[ \because \int\sqrt{x^2 - a^2}dx = \frac{x}{2}\sqrt{x^2 - a^2} - \frac{a^2}{2}\text{ ln}\left( \left| x + \sqrt{x^2 - a^2} \right| \right) + c\]
\[ \therefore I = \frac{(x - 1)}{2}\sqrt{(x - 1 )^2 - 1} - \frac{1}{2}\text{ ln}\left| \left( x - 1 \right) + \sqrt{x^2 - 2x} \right| + c\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left\{ x^2 + e^{\log x}+ \left( \frac{e}{2} \right)^x \right\} dx\]
\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]
` ∫ sin x \sqrt (1-cos 2x) dx `
Integrate the following integrals:
\[\int\text { sin x cos 2x sin 3x dx}\]
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
` ∫ {"cosec" x }/ { log tan x/2 ` dx
\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]
` = ∫ root (3){ cos^2 x} sin x dx `
\[\int x^3 \cos x^4 dx\]
\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]
\[\ ∫ x \text{ e}^{x^2} dx\]
\[\int\frac{e^{2x}}{1 + e^x} dx\]
` ∫ sec^6 x tan x dx `
\[\int\frac{x^2 - 1}{x^2 + 4} dx\]
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]
\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{ dx }\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]
\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{ dx }\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
` ∫ sin x log (\text{ cos x ) } dx `
\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]
\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]
\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]
\[\int e^x \sec x \left( 1 + \tan x \right) dx\]
\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]
\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]
\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int \tan^5 x\ dx\]
\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]
\[\int {cosec}^4 2x\ dx\]
\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]