English

∫ √ X 2 − 2 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\sqrt{x^2 - 2x} \text{ dx}\]
Sum

Solution

\[I = \int\sqrt{x^2 - 2x}dx\]
 
\[\Rightarrow I = \int\sqrt{x^2 - 2x + 1 - 1}\text{ dx}\]
\[ \Rightarrow I = \int\sqrt{(x - 1 )^2 - 1^2}dx\]
\[ \because \int\sqrt{x^2 - a^2}dx = \frac{x}{2}\sqrt{x^2 - a^2} - \frac{a^2}{2}\text{ ln}\left( \left| x + \sqrt{x^2 - a^2} \right| \right) + c\]
\[ \therefore I = \frac{(x - 1)}{2}\sqrt{(x - 1 )^2 - 1} - \frac{1}{2}\text{ ln}\left| \left( x - 1 \right) + \sqrt{x^2 - 2x} \right| + c\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.28 [Page 155]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.28 | Q 17 | Page 155

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int x^3 \cos x^4 dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

` ∫  sec^6   x  tan    x   dx `

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int \tan^5 x\ dx\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×