English

∫ 1 1 + X + X 2 + X 3 Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]
Sum

Solution

\[\text{We have}, \]
\[I = \int\frac{dx}{1 + x + x^2 + x^3}\]
\[ = \int\frac{dx}{\left( 1 + x \right) + x^2 \left( 1 + x \right)}\]
\[ = \int \frac{dx}{\left( 1 + x \right) \left( 1 + x^2 \right)}\]
\[\text{ Let }\frac{1}{\left( x + 1 \right) \left( 1 + x^2 \right)} = \frac{A}{x + 1} + \frac{Bx + C}{x^2 + 1}\]
\[ \Rightarrow \frac{1}{\left( x + 1 \right) \left( x^2 + 1 \right)} = \frac{A \left( x^2 + 1 \right) + \left( Bx + C \right) \left( x + 1 \right)}{\left( x + 1 \right) \left( x^2 + 1 \right)}\]
\[ \Rightarrow 1 = A \left( x^2 + 1 \right) + B x^2 + Bx + Cx + C\]
\[ \Rightarrow 1 = \left( A + B \right) x^2 + \left( B + C \right) x + \left( A + C \right)\]
\[\text{Equating Coefficient of like terms}\]
\[A + B = 0 . . . . . \left( 1 \right)\]
\[B + C = 0 . . . . . \left( 2 \right)\]
\[A + C = 1 . . . . . \left( 3 \right)\]
\[\text{Solving} \left( 1 \right), \left( 2 \right) \text{ and }\left( 3 \right), \text{we get}, \]
\[A = \frac{1}{2}\]
\[B = - \frac{1}{2}\]
\[C = \frac{1}{2}\]
\[ \therefore \frac{1}{\left( x + 1 \right) \left( x^2 + 1 \right)} = \frac{1}{2 \left( x + 1 \right)} + \frac{- \frac{x}{2} + \frac{1}{2}}{x^2 + 1}\]
\[ \Rightarrow \frac{1}{\left( x + 1 \right) \left( x^2 + 1 \right)} = \frac{1}{2 \left( x + 1 \right)} - \frac{1}{2} \left( \frac{x}{x^2 + 1} \right) + \frac{1}{2 \left( x^2 + 1 \right)}\]
\[ \therefore I = \frac{1}{2}\int\frac{dx}{x + 1} - \frac{1}{2}\int\frac{x dx}{\left( x^2 + 1 \right)} + \frac{1}{2}\int\frac{dx}{x^2 + 1}\]
\[\text{ Putting x}^2 + 1 = t\]
\[ \Rightarrow 2x\ dx\ = dt\]
\[ \Rightarrow x\ dx\ = \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int\frac{dx}{x + 1} - \frac{1}{4}\int\frac{dt}{t} + \frac{1}{2}\int\frac{dx}{x^2 + 1}\]
\[ = \frac{1}{2} \text{ log }\left| x + 1 \right| - \frac{1}{4} \text{ log }\left| t \right| + \frac{1}{2} \text{ tan}^{- 1} x + C\]
\[ = \frac{1}{2} \text{ log }\left| x + 1 \right| - \frac{1}{4} \text{ log }\left| x^2 + 1 \right| + \frac{1}{2} \text{ tan}^{- 1} \left( x \right) + C\]
\[ = \frac{1}{2} \text{ log } \left| x + 1 \right| - \frac{1}{2} \text{ log } \left( \sqrt{x^2 + 1} \right) + \frac{1}{2} \text{ tan}^{- 1} \left( x \right) + C\]
\[ = \frac{1}{2} \text{ log } \left( \frac{\left| x + 1 \right|}{\sqrt{x^2 + 1}} \right) + \frac{1}{2} \text{ tan}^{- 1} \left( x \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 205]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 124 | Page 205

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int \tan^4 x\ dx\]

\[\int \sin^5 x\ dx\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×