Advertisements
Advertisements
Question
\[\int\frac{x}{x^4 - x^2 + 1} dx\]
Sum
Solution
` ∫ {x dx}/{x^4 - x^2 + 1}`
\[\text{ Let } x^2 = t\]
\[ \Rightarrow \text{ 2x dx } = dt\]
\[ \Rightarrow \text{ x dx } = \frac{dt}{2}\]
Now, ` ∫ {x dx}/{x^4 - x^2 + 1}`
\[ = \frac{1}{2}\int\frac{dt}{t^2 - t + 1}\]
\[ = \frac{1}{2}\int\frac{dt}{t^2 - t + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 + 1}\]
\[ = \frac{1}{2}\int\frac{dt}{\left( t - \frac{1}{2} \right)^2 + \frac{3}{4}}\]
\[ = \frac{1}{2}\int\frac{dt}{\left( t - \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}\]
\[ = \frac{1}{2} \times \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{t - \frac{1}{2}}{\frac{\sqrt{3}}{2}} \right) + C\]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{2t - 1}{\sqrt{3}} \right) + C\]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{2 x^2 - 1}{\sqrt{3}} \right) + C\]
\[\text{ Let } x^2 = t\]
\[ \Rightarrow \text{ 2x dx } = dt\]
\[ \Rightarrow \text{ x dx } = \frac{dt}{2}\]
Now, ` ∫ {x dx}/{x^4 - x^2 + 1}`
\[ = \frac{1}{2}\int\frac{dt}{t^2 - t + 1}\]
\[ = \frac{1}{2}\int\frac{dt}{t^2 - t + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 + 1}\]
\[ = \frac{1}{2}\int\frac{dt}{\left( t - \frac{1}{2} \right)^2 + \frac{3}{4}}\]
\[ = \frac{1}{2}\int\frac{dt}{\left( t - \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}\]
\[ = \frac{1}{2} \times \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{t - \frac{1}{2}}{\frac{\sqrt{3}}{2}} \right) + C\]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{2t - 1}{\sqrt{3}} \right) + C\]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{2 x^2 - 1}{\sqrt{3}} \right) + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]
\[\int \left( 3x + 4 \right)^2 dx\]
\[\int\frac{x^3}{x - 2} dx\]
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]
\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]
\[\int \tan^3 \text{2x sec 2x dx}\]
\[\ \int\ x \left( 1 - x \right)^{23} dx\]
\[\int \sin^3 x \cos^6 x \text{ dx }\]
\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]
\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]
\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]
`int 1/(cos x - sin x)dx`
\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx }\]
\[\int x e^x \text{ dx }\]
\[\int x \text{ sin 2x dx }\]
\[\int x^2 \text{ cos x dx }\]
\[\int x \cos^2 x\ dx\]
\[\int e^\sqrt{x} \text{ dx }\]
\[\int x \cos^3 x\ dx\]
\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]
\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]
\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]
\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]
\[\int\frac{1}{x^4 - 1} dx\]
\[\int\sqrt{\cot \text{θ} d } \text{ θ}\]
\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to
\[\int x \sin^5 x^2 \cos x^2 dx\]
\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]
\[\int\frac{1}{\sec x + cosec x}\text{ dx }\]
\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]
\[\int \tan^{- 1} \sqrt{x}\ dx\]
\[\int \left( \sin^{- 1} x \right)^3 dx\]
\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]
\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]
\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]