Advertisements
Advertisements
Question
\[\int x \cos^3 x\ dx\]
Sum
Solution
Let I=\[\int x \cos^3 x\ dx\]
\[\text{ As we know }, \]
\[\cos 3x = 4 \cos^3 x - 3\cos x\]
\[ \Rightarrow \cos^3 x = \frac{1}{4}\left( \cos 3x + 3\cos x \right)\]
\[\cos 3x = 4 \cos^3 x - 3\cos x\]
\[ \Rightarrow \cos^3 x = \frac{1}{4}\left( \cos 3x + 3\cos x \right)\]
\[\therefore I = \frac{1}{4}\int x . \left( \cos 3x + 3 \cos x \right)dx\]
\[ = \frac{1}{4}\int x_I . \text{ cos}_{II} \left( \text{ 3x }\right) dx + \frac{3}{4} \int x_I . \cos x_{II} \text{ dx }\]
\[ = \frac{1}{4}\left[ x . \int\text{ cos 3x dx }- \int\left\{ \frac{d}{dx}\left( x \right) . \int\text{ cos 3x dx }\right\}dx \right] + \frac{3}{4}\left[ x\int\cos x - \int\left\{ \frac{d}{dx}\left( x \right) . \int\text{ cos x dx }\right\}dx \right]\]
\[ = \frac{1}{4}\left[ x . \frac{\sin 3x}{3} - \int1 . \frac{\sin 3x}{3}dx \right] + \frac{3}{4}\left[ x\left( \sin x \right) - \int1 . \text{ sin x dx } \right]\]
\[ = \frac{x \sin 3x}{12} + \frac{\cos 3x}{36} + \frac{3}{4}x \sin x + \frac{3}{4}\cos x + C\]
\[ = \frac{1}{4}\int x_I . \text{ cos}_{II} \left( \text{ 3x }\right) dx + \frac{3}{4} \int x_I . \cos x_{II} \text{ dx }\]
\[ = \frac{1}{4}\left[ x . \int\text{ cos 3x dx }- \int\left\{ \frac{d}{dx}\left( x \right) . \int\text{ cos 3x dx }\right\}dx \right] + \frac{3}{4}\left[ x\int\cos x - \int\left\{ \frac{d}{dx}\left( x \right) . \int\text{ cos x dx }\right\}dx \right]\]
\[ = \frac{1}{4}\left[ x . \frac{\sin 3x}{3} - \int1 . \frac{\sin 3x}{3}dx \right] + \frac{3}{4}\left[ x\left( \sin x \right) - \int1 . \text{ sin x dx } \right]\]
\[ = \frac{x \sin 3x}{12} + \frac{\cos 3x}{36} + \frac{3}{4}x \sin x + \frac{3}{4}\cos x + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec } {x }- \cot x} dx\]
\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]
\[\int \tan^2 \left( 2x - 3 \right) dx\]
\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]
\[\int \sin^2\text{ b x dx}\]
\[\int\frac{\sec^2 x}{\tan x + 2} dx\]
\[\int \tan^{3/2} x \sec^2 \text{x dx}\]
\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1} \text{dx}\]
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
\[\int \sin^5 x \text{ dx }\]
\[\int \sin^3 x \cos^5 x \text{ dx }\]
Evaluate the following integrals:
\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]
` ∫ {1}/{a^2 x^2- b^2}dx`
\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]
\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]
\[\int\frac{x}{\sqrt{4 - x^4}} dx\]
\[\int\frac{x + 1}{x^2 + x + 3} dx\]
\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]
\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]
\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]
\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]
\[\int x^2 \cos 2x\ \text{ dx }\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]
\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]
\[\int x^3 \tan^{- 1}\text{ x dx }\]
\[\int x \sin^3 x\ dx\]
\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]
\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]
\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int\sqrt{\cot \text{θ} d } \text{ θ}\]
\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{1}{1 - x - 4 x^2}\text{ dx }\]
\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]
\[\int \tan^{- 1} \sqrt{x}\ dx\]