English

∫ X Cos 3 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int x \cos^3 x\ dx\]
Sum

Solution

Let I=\[\int x \cos^3 x\ dx\]

\[\text{ As  we   know }, \]
\[\cos 3x = 4 \cos^3 x - 3\cos x\]
\[ \Rightarrow \cos^3 x = \frac{1}{4}\left( \cos 3x + 3\cos x \right)\]
\[\therefore I = \frac{1}{4}\int x . \left( \cos 3x + 3 \cos x \right)dx\]
\[ = \frac{1}{4}\int x_I . \text{ cos}_{II} \left( \text{ 3x  }\right) dx + \frac{3}{4} \int x_I . \cos x_{II} \text{ dx }\]
\[ = \frac{1}{4}\left[ x . \int\text{ cos 3x dx }- \int\left\{ \frac{d}{dx}\left( x \right) . \int\text{ cos 3x dx }\right\}dx \right] + \frac{3}{4}\left[ x\int\cos x - \int\left\{ \frac{d}{dx}\left( x \right) . \int\text{ cos x dx }\right\}dx \right]\]
\[ = \frac{1}{4}\left[ x . \frac{\sin 3x}{3} - \int1 . \frac{\sin 3x}{3}dx \right] + \frac{3}{4}\left[ x\left( \sin x \right) - \int1 . \text{ sin  x  dx } \right]\]
\[ = \frac{x \sin 3x}{12} + \frac{\cos 3x}{36} + \frac{3}{4}x \sin x + \frac{3}{4}\cos x + C\]
 
shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.25 [Page 134]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.25 | Q 56 | Page 134

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


\[\int \sin^5 x \text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int x \sin^3 x\ dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int \tan^{- 1} \sqrt{x}\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×