English

∫ X + 3 ( X + 1 ) 4 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]
Sum

Solution

\[\int\left[ \frac{x + 3}{\left( x + 1 \right)^4} \right]dx\]
\[ = \int\left[ \frac{x + 1 + 2}{\left( x + 1 \right)^4} \right]dx\]
\[ = \int\left[ \frac{\left( x + 1 \right)}{\left( x + 1 \right)^4} + \frac{2}{\left( x + 1 \right)^4} \right]dx\]
\[ = \int\frac{dx}{\left( x + 1 \right)^3} + 2\int\frac{dx}{\left( x + 1 \right)^4}\]
\[ = \int \left( x + 1 \right)^{- 3} dx + 2\int \left( x + 1 \right)^{- 4} dx\]
\[ = \left[ \frac{\left( x + 1 \right)^{- 3 + 1}}{- 3 + 1} \right] + 2\left[ \frac{\left( x + 1 \right)^{- 4 + 1}}{- 4 + 1} \right] + C\]
\[ = - \frac{1}{2} \left( x + 1 \right)^{- 2} - \frac{2}{3} \left( x + 1 \right)^{- 3} + C\]
\[ = -  \frac{1}{2 \left( x + 1 \right)^2} - \frac{2}{3 \left( x + 1 \right)^3} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.03 [Page 23]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.03 | Q 4 | Page 23

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int \cot^6 x \text{ dx }\]

\[\int \cos^7 x \text{ dx  } \]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int x \cos x\ dx\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int x^3 \cos x^2 dx\]

\[\int x \sin x \cos x\ dx\]

 


` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int \sin^5 x\ dx\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×