Advertisements
Advertisements
Question
\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]
Sum
Solution
\[\text{Let I } = \int\frac{1}{\cos^2 x \left( 1 - \tan x \right)^2}dx\]
\[ = \int\frac{\sec^2 x}{\left( 1 - \tan x \right)^2} \text{dx} \]
\[ = \int\frac{\sec^2 \text{x dx}}{\left( 1 - \tan x \right)^2}\]
Let 1- tan x = t
\[- \sec^2 \text{x dx} = dt\]
\[ \Rightarrow \sec^2\text{ x dx} = - dt\]
\[ \Rightarrow \sec^2\text{ x dx} = - dt\]
\[\therefore I = \int\frac{- dt}{t^2}\]
\[ = - \int t^{- 2} dt\]
\[ = - \left[ \frac{t^{- 2 + 1}}{- 2 + 1} \right] + C\]
\[ = \frac{1}{t} + C\]
\[ = \frac{1}{1 - \tan x} + C\]
\[ = - \int t^{- 2} dt\]
\[ = - \left[ \frac{t^{- 2 + 1}}{- 2 + 1} \right] + C\]
\[ = \frac{1}{t} + C\]
\[ = \frac{1}{1 - \tan x} + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{1}{1 - \cos x} dx\]
\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]
Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]
\[\int\frac{x^2 + x + 5}{3x + 2} dx\]
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
\[\int\frac{1 - \sin x}{x + \cos x} dx\]
\[\int\frac{\sec^2 x}{\tan x + 2} dx\]
\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]
\[\int\frac{e^{2x}}{1 + e^x} dx\]
\[\int x^2 \sqrt{x + 2} \text{ dx }\]
` ∫ sec^6 x tan x dx `
` ∫ tan^5 x dx `
\[\int \sin^3 x \cos^6 x \text{ dx }\]
Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]
\[\int\frac{3 x^5}{1 + x^{12}} dx\]
\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]
\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]
\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]
\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]
\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]
\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]
\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]
\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]
\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]
\[\int\frac{1}{p + q \tan x} \text{ dx }\]
\[\int\frac{1}{4 + 3 \tan x} dx\]
\[\int\frac{\log x}{x^n}\text{ dx }\]
\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]
\[\int x \cos^3 x\ dx\]
\[\int\frac{1}{x^4 - 1} dx\]
\[\int\frac{1}{1 + \tan x} dx =\]
\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to
\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]
\[\int \sin^5 x\ dx\]
\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{ dx }\]
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]
\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]