मराठी

∫ 1 Cos 2 X ( 1 − Tan X ) 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]
बेरीज

उत्तर

\[\text{Let  I } = \int\frac{1}{\cos^2 x \left( 1 - \tan x \right)^2}dx\]
\[ = \int\frac{\sec^2 x}{\left( 1 - \tan x \right)^2} \text{dx} \]
\[ = \int\frac{\sec^2 \text{x dx}}{\left( 1 - \tan x \right)^2}\]

Let 1-  tan x = t

\[- \sec^2 \text{x dx} = dt\]
\[ \Rightarrow \sec^2\text{ x dx} = - dt\]
\[\therefore I = \int\frac{- dt}{t^2}\]
\[ = - \int t^{- 2} dt\]
\[ = - \left[ \frac{t^{- 2 + 1}}{- 2 + 1} \right] + C\]
\[ = \frac{1}{t} + C\]
\[ = \frac{1}{1 - \tan x} + C\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.03 [पृष्ठ २४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.03 | Q 19 | पृष्ठ २४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×