मराठी

∫ E M Sin − 1 X √ 1 − X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 

बेरीज

उत्तर

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\text{Let} \sin^{- 1} x = t\]
\[ \Rightarrow \frac{1}{\sqrt{1 - x^2}}dx = dt\]
Now,` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

\[ = \int e^\text{m t} \cdot dt\]
\[ = \frac{e^{mt}}{m} + C\]

` ∫   e^{m   sin ^-1  x}/m }  ` dx

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.09 [पृष्ठ ५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.09 | Q 50 | पृष्ठ ५९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

 
` ∫  x tan ^2 x dx 

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×