मराठी

∫ X 3 √ 1 + X 2 D X = a ( 1 + X 2 ) 3 2 + B √ 1 + X 2 + C , Then - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 

पर्याय

  • \[ a = \frac{1}{3}, b = 1\]

  • \[a = - \frac{1}{3}, b = 1\]

  • \[ a = - \frac{1}{3}, b = - 1\]

  • \[ a = \frac{1}{3}, b = - 1\]

     

MCQ

उत्तर

\[ a = \frac{1}{3}, b = - 1\]

 

\[\text{Let }I = \int\frac{x^3}{\sqrt{1 + x^2}}dx\]

\[ = \int\frac{x . x^2}{\sqrt{1 + x^2}}dx\]

\[\text{Let }\left( 1 + x^2 \right) = t\]

\[\text{On differentiating both sides, we get}\]

\[ 2x\ dx = dt\]

\[ \therefore I = \frac{1}{2}\int\frac{t - 1}{\sqrt{t}}dt\]

\[ = \frac{1}{2}\int\left( \frac{t}{\sqrt{t}} - \frac{1}{\sqrt{t}} \right)dt\]

\[ = \frac{1}{2}\int\left( t^\frac{1}{2} - t^\frac{- 1}{2} \right)dt\]

\[ = \frac{1}{2}\left( \frac{2}{3} t^\frac{3}{2} - \frac{2}{1} t^\frac{1}{2} \right) + C\]

\[ = \left( \frac{1}{3} \left( 1 + x^2 \right)^\frac{3}{2} - \sqrt{1 + x^2} \right) + C\]

\[\text{Since, }\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\]

\[\text{Therefore, }a = \frac{1}{3}, b = - 1 . \]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - MCQ [पृष्ठ २०२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
MCQ | Q 33 | पृष्ठ २०२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

 
` ∫  x tan ^2 x dx 

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int \cot^4 x\ dx\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×