मराठी

∫ 1 1 − Cos X − Sin X D X = - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

पर्याय

  • \[\log\left| 1 + \cot\frac{x}{2} \right| + C\]
  • \[\log\left| 1 - \tan\frac{x}{2} \right| + C\]
  • \[\log\left| 1 - \cot\frac{x}{2} \right| + C\]
  • \[\log\left| 1 + \tan\frac{x}{2} \right| + C\]
MCQ

उत्तर

\[\log\left| 1 - \cot\frac{x}{2} \right| + C\]
 
 
\[\text{Let }I = \int\frac{dx}{1 - \cos x - \sin x}\]

\[ = \int\frac{dx}{1 - \left( \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right) - \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}}\]

\[ = \int\frac{\left( 1 + \tan^2 \frac{x}{2} \right) dx}{\left( 1 + \tan^2 \frac{x}{2} \right) - \left( 1 - \tan^2 \frac{x}{2} \right) - 2 \tan \frac{x}{2}}\]

\[ = \int\frac{\sec^2 \frac{x}{2} dx}{2 \tan^2 \frac{x}{2} - 2 \tan \frac{x}{2}}\]

\[ = \frac{1}{2}\int\frac{\sec^2 \frac{x}{2} dx}{\tan^2 \frac{x}{2} - \tan \frac{x}{2}}\]
\[\text{Putting }\tan \frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \left( \frac{x}{2} \right) dx = dt\]
\[ \Rightarrow \sec^2 \left( \frac{x}{2} \right) dx = 2dt\]
\[ \therefore I = \frac{1}{2}\int\frac{2dt}{t^2 - t}\]
\[ = \int\frac{dt}{t^2 - t + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}\]
\[ = \int\frac{dt}{\left( t - \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}\]
\[ = \frac{1}{2 \times \frac{1}{2}} \ln \left| \frac{t - \frac{1}{2} - \frac{1}{2}}{t - \frac{1}{2} + \frac{1}{2}} \right| + C ............\left( \because \int\frac{dx}{x^2 - a^2} = \frac{1}{2a}\ln\left| \frac{x - a}{x + a} \right| + C \right)\]
\[ = \ln \left| \frac{t - 1}{t} \right| + C\]
\[ = \ln \left| 1 - \frac{1}{t} \right| + C\]
\[ = \ln \left| 1 - \frac{1}{\tan \frac{x}{2}} \right| + C ..........\left( \because t = \tan \frac{x}{2} \right)\]
\[ = \ln \left| 1 - \cot \frac{x}{2} \right| + C\]

shaalaa.com

Notes

Here in answer \[\log\left| 1 - \cot\frac{x}{2} \right| + C\] refers to \[\log_e \left| 1 - \cot\frac{x}{2} \right| + C\text{ or }\ln \left| 1 - \cot\frac{x}{2} \right| + C\]

  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - MCQ [पृष्ठ २०१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
MCQ | Q 17 | पृष्ठ २०१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1}{1 - \cos x} dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

` ∫  tan^5 x   sec ^4 x   dx `

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int \cot^5 x\ dx\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×