हिंदी

∫ 1 1 − Cos X − Sin X D X = - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

विकल्प

  • \[\log\left| 1 + \cot\frac{x}{2} \right| + C\]
  • \[\log\left| 1 - \tan\frac{x}{2} \right| + C\]
  • \[\log\left| 1 - \cot\frac{x}{2} \right| + C\]
  • \[\log\left| 1 + \tan\frac{x}{2} \right| + C\]
MCQ

उत्तर

\[\log\left| 1 - \cot\frac{x}{2} \right| + C\]
 
 
\[\text{Let }I = \int\frac{dx}{1 - \cos x - \sin x}\]

\[ = \int\frac{dx}{1 - \left( \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right) - \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}}\]

\[ = \int\frac{\left( 1 + \tan^2 \frac{x}{2} \right) dx}{\left( 1 + \tan^2 \frac{x}{2} \right) - \left( 1 - \tan^2 \frac{x}{2} \right) - 2 \tan \frac{x}{2}}\]

\[ = \int\frac{\sec^2 \frac{x}{2} dx}{2 \tan^2 \frac{x}{2} - 2 \tan \frac{x}{2}}\]

\[ = \frac{1}{2}\int\frac{\sec^2 \frac{x}{2} dx}{\tan^2 \frac{x}{2} - \tan \frac{x}{2}}\]
\[\text{Putting }\tan \frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \left( \frac{x}{2} \right) dx = dt\]
\[ \Rightarrow \sec^2 \left( \frac{x}{2} \right) dx = 2dt\]
\[ \therefore I = \frac{1}{2}\int\frac{2dt}{t^2 - t}\]
\[ = \int\frac{dt}{t^2 - t + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}\]
\[ = \int\frac{dt}{\left( t - \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}\]
\[ = \frac{1}{2 \times \frac{1}{2}} \ln \left| \frac{t - \frac{1}{2} - \frac{1}{2}}{t - \frac{1}{2} + \frac{1}{2}} \right| + C ............\left( \because \int\frac{dx}{x^2 - a^2} = \frac{1}{2a}\ln\left| \frac{x - a}{x + a} \right| + C \right)\]
\[ = \ln \left| \frac{t - 1}{t} \right| + C\]
\[ = \ln \left| 1 - \frac{1}{t} \right| + C\]
\[ = \ln \left| 1 - \frac{1}{\tan \frac{x}{2}} \right| + C ..........\left( \because t = \tan \frac{x}{2} \right)\]
\[ = \ln \left| 1 - \cot \frac{x}{2} \right| + C\]

shaalaa.com

Notes

Here in answer \[\log\left| 1 - \cot\frac{x}{2} \right| + C\] refers to \[\log_e \left| 1 - \cot\frac{x}{2} \right| + C\text{ or }\ln \left| 1 - \cot\frac{x}{2} \right| + C\]

  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - MCQ [पृष्ठ २०१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
MCQ | Q 17 | पृष्ठ २०१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


` ∫   cos  3x   cos  4x` dx  

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int \tan^3 x\ dx\]

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×