हिंदी

∫ tan − 1 √ 1 − x 1 + x dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
योग

उत्तर

\[\text{We have}, \]

\[I = \int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\text{ Putting  x }= \cos \theta\]

\[ \Rightarrow dx = - \sin \text{  θ  dθ}\]

\[ \therefore I = \int \tan^{- 1} \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} \left( - \sin \text{  θ  dθ} \right)\]

\[ = \int \tan^{- 1} \sqrt{\frac{2 \sin^2 \frac{\theta}{2}}{2 \cos^2 \frac{\theta}{2}}} \left( - \sin \theta \right)d\theta\]

\[ = \int \tan^{- 1} \left( \tan \frac{\theta}{2} \right) \left( - \sin \theta \right)d\theta\]

\[ = - \frac{1}{2}\int\theta \sin \theta d\theta\]

\[\text{Considering} \text{  θ  as first function and} \sin \text{  θ   as second function}\]

\[I = - \frac{1}{2}\left[ \theta\left( - \cos \theta \right) - \int1\left( - \cos \theta \right)d\theta \right]\]

\[ = - \frac{1}{2}\left( \theta\left( - \cos \theta \right) + \int\cos \theta d\theta \right)\]

\[ = - \frac{1}{2}\left( - \theta \cos \theta + \sin \theta \right) + C\]

\[ = - \frac{1}{2}\left[ - \theta \cos \theta + \sqrt{1 - \cos^2 \theta} \right] + C\]

\[ = - \frac{1}{2}\left[ - \cos^{- 1} x \times x + \sqrt{1 - x^2} \right] + C\]

\[ = \frac{1}{2}\left[ x \cos^{- 1} x - \sqrt{1 - x^2} \right] + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 112 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

` ∫   cos  3x   cos  4x` dx  

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int x \sin^3 x\ dx\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int \cot^4 x\ dx\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×