Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{We have}, \]
\[I = \int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\text{ Putting x }= \cos \theta\]
\[ \Rightarrow dx = - \sin \text{ θ dθ}\]
\[ \therefore I = \int \tan^{- 1} \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} \left( - \sin \text{ θ dθ} \right)\]
\[ = \int \tan^{- 1} \sqrt{\frac{2 \sin^2 \frac{\theta}{2}}{2 \cos^2 \frac{\theta}{2}}} \left( - \sin \theta \right)d\theta\]
\[ = \int \tan^{- 1} \left( \tan \frac{\theta}{2} \right) \left( - \sin \theta \right)d\theta\]
\[ = - \frac{1}{2}\int\theta \sin \theta d\theta\]
\[\text{Considering} \text{ θ as first function and} \sin \text{ θ as second function}\]
\[I = - \frac{1}{2}\left[ \theta\left( - \cos \theta \right) - \int1\left( - \cos \theta \right)d\theta \right]\]
\[ = - \frac{1}{2}\left( \theta\left( - \cos \theta \right) + \int\cos \theta d\theta \right)\]
\[ = - \frac{1}{2}\left( - \theta \cos \theta + \sin \theta \right) + C\]
\[ = - \frac{1}{2}\left[ - \theta \cos \theta + \sqrt{1 - \cos^2 \theta} \right] + C\]
\[ = - \frac{1}{2}\left[ - \cos^{- 1} x \times x + \sqrt{1 - x^2} \right] + C\]
\[ = \frac{1}{2}\left[ x \cos^{- 1} x - \sqrt{1 - x^2} \right] + C\]
APPEARS IN
संबंधित प्रश्न
\[\int\left( e^\text{log x} + \sin x \right) \text{ cos x dx }\]
Write a value of
If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]
\[\int\text{ cos x cos 2x cos 3x dx}\]
\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]