Advertisements
Advertisements
प्रश्न
\[\int\frac{1}{e^x + e^{- x}} dx\]
योग
उत्तर
\[\text{ Let I }= \int\frac{1}{e^x + e^{- x}}\text{ dx }\]
\[ = \int\frac{dx}{e^x + \frac{1}{e^x}}\]
\[ = \int\frac{e^x dx}{e^{2x} + 1}\]
\[ = \int\frac{e^x dx}{\left( e^x \right)^2 + 1}\]
\[\text{ Putting e}^x = t\]
\[ \Rightarrow e^x dx = dt\]
\[ \therefore I = \int\frac{dt}{t^2 + 1}\]
\[ = \tan^{- 1} t + C ..............\left( \because \int\frac{dt}{a^2 + x^2} = \frac{1}{a} \tan^{- 1} \frac{x}{a} + C \right)\]
\[ = \tan^{- 1} e^x + C............. \left( \because t = e^x \right)\]
\[ = \int\frac{dx}{e^x + \frac{1}{e^x}}\]
\[ = \int\frac{e^x dx}{e^{2x} + 1}\]
\[ = \int\frac{e^x dx}{\left( e^x \right)^2 + 1}\]
\[\text{ Putting e}^x = t\]
\[ \Rightarrow e^x dx = dt\]
\[ \therefore I = \int\frac{dt}{t^2 + 1}\]
\[ = \tan^{- 1} t + C ..............\left( \because \int\frac{dt}{a^2 + x^2} = \frac{1}{a} \tan^{- 1} \frac{x}{a} + C \right)\]
\[ = \tan^{- 1} e^x + C............. \left( \because t = e^x \right)\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\]
\[\int\frac{1}{1 - \sin x} dx\]
\[\int\frac{\tan x}{\sec x + \tan x} dx\]
\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]
\[\int\frac{1 - \cot x}{1 + \cot x} dx\]
\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]
\[\int\sqrt{1 + e^x} . e^x dx\]
\[\int\frac{1}{1 + \sqrt{x}} dx\]
\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]
\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]
\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
\[\int {cosec}^4 \text{ 3x } \text{ dx } \]
\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]
\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{ dx}\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]
\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]
\[\int\frac{1}{p + q \tan x} \text{ dx }\]
\[\int\frac{1}{3 + 4 \cot x} dx\]
\[\int\frac{\log x}{x^n}\text{ dx }\]
\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]
∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]
\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]
\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]
\[\int\frac{1}{e^x + 1} \text{ dx }\]
\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]
\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{ dx }\]
\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]
\[\int \log_{10} x\ dx\]
\[\int x \sec^2 2x\ dx\]
\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]
\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`