Advertisements
Advertisements
प्रश्न
\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]
विकल्प
tan x − x + C
x + tan x + C
x − tan x + C
− x − cot x + C
MCQ
उत्तर
x − tan x + C
\[\int\left( \frac{\cos 2x - 1}{\cos 2x + 1} \right)dx\]
\[ = \int\left( \frac{1 - 2 \sin^2 x - 1}{2 \cos^2 x - 1 + 1} \right)dx\]
\[ = - \int \tan^2 x dx\]
\[ = - \int\left( \sec^2 x - 1 \right)dx\]
\[ = \int\left( 1 - \sec^2 x \right)dx\]
\[ = x - \tan x + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]
\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]
\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]
\[\int\frac{\tan x}{\sec x + \tan x} dx\]
\[\int \text{sin}^2 \left( 2x + 5 \right) \text{dx}\]
\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]
\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]
\[\int \tan^{3/2} x \sec^2 \text{x dx}\]
\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]
\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]
\[\int \sec^4 2x \text{ dx }\]
\[\int\frac{x^4 + 1}{x^2 + 1} dx\]
\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]
\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]
\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]
\[\int x \sin^3 x\ dx\]
\[\int e^x \left( \cos x - \sin x \right) dx\]
\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]
\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]
\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]
\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]
\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]
\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]
\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]
\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
\[\int\sin x \sin 2x \text{ sin 3x dx }\]
\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]
\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]
\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]