Advertisements
Advertisements
प्रश्न
\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]
योग
उत्तर
\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^\frac{1}{3}} \right)dx\]
\[ = \int 2^x dx + 5 \int\frac{dx}{x} - \int\frac{dx}{x^\frac{1}{3}}\]
\[ = \int 2^x dx + 5 \int\frac{dx}{x} - \int x^{- \frac{1}{3}} dx\]
\[ = \frac{2^x}{\ln 2} + 5 \ln x - \left[ \frac{x^{- \frac{1}{3} + 1}}{- \frac{1}{3} + 1} \right] + C\]
\[ = \frac{2^x}{\ln 2} + 5 \ln x - \frac{3}{2} x^\frac{2}{3} + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\left( x^e + e^x + e^e \right) dx\]
\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]
\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]
\[\int \sin^7 x \text{ dx }\]
\[\int\frac{x^4 + 1}{x^2 + 1} dx\]
\[\int\frac{x}{x^4 - x^2 + 1} dx\]
\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]
\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]
\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]
\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]
\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]
\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{ dx }\]
\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]
\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]
\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]
\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]
\[\int\frac{1}{3 + 4 \cot x} dx\]
\[\int \sec^{- 1} \sqrt{x}\ dx\]
\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]
\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]
\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]
\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]
\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]
\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]
\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx }\]
\[\int\frac{x^3 - 1}{x^3 + x} dx\]
\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]
\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]
\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]
\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]
\[\int\sqrt{3 x^2 + 4x + 1}\text{ dx }\]
\[\int x\sqrt{1 + x - x^2}\text{ dx }\]
\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]
\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]
\[\int\frac{\cos^7 x}{\sin x} dx\]
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`