हिंदी

∫ Sin − 1 √ X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]
योग

उत्तर

\[\text{ Let I }= \int \sin^{- 1} \sqrt{x} dx\]
\[ = \int \frac{\sqrt{x} . \sin^{- 1} \sqrt{x}}{\sqrt{x}}dx\]
\[\text{ Let} \sqrt{x} = t\]
\[ \Rightarrow \frac{1}{2\sqrt{x}}dx = dt\]
\[ \Rightarrow \frac{dx}{\sqrt{x}} = 2dt\]
\[ \therefore I = \int t_{II} . \sin^{- 1} t_I dt\]
\[ = \sin^{- 1} t\int t\ dt - \int\left\{ \frac{d}{dt}\left( \sin^{- 1} t \right)\int t\ dt \right\}dt\]
\[ = 2 \left[ \sin^{- 1} t . \frac{t^2}{2} - \int \frac{1}{\sqrt{1 - t^2}} \times \frac{t^2}{2}dt \right]\]
\[ = \sin^{- 1} t . t^2 - \int \frac{t^2}{\sqrt{1 - t^2}}dt\]
\[ = \sin^{- 1} t . t^2 + \int\left( \frac{1 - t^2 - 1}{\sqrt{1 - t^2}} \right)dt\]
\[ = \sin^{- 1} t . t^2 + \int \sqrt{1 - t^2} dt - \int \frac{dt}{\sqrt{1 - t^2}}\]
\[ = \sin^{- 1} t . t^2 + \frac{t}{2}\sqrt{1 - t^2} + \frac{1}{2} \sin^{- 1} t - \sin^{- 1} t + C\]
\[ = \sin^{- 1} t . t^2 + \frac{t}{2}\sqrt{1 - t^2} - \frac{1}{2} \sin^{- 1} t + C\]
\[ = x . \sin^{- 1} \sqrt{x} + \frac{\sqrt{x}}{2} \sqrt{1 - x} - \frac{1}{2} \sin^{- 1} \left( \sqrt{x} \right) + C \left( \because \sqrt{x} = t \right)\]
\[ = \frac{\left( 2x - 1 \right) \sin^{- 1} \sqrt{x}}{2} + \frac{\sqrt{x - x^2}}{2} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.25 | Q 31 | पृष्ठ १३४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

`∫     cos ^4  2x   dx `


\[\int \cos^2 \text{nx dx}\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int x \cos^3 x\ dx\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int \sin^4 2x\ dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int \cot^4 x\ dx\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int \sec^6 x\ dx\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×