हिंदी

∫ 1 X ( X 6 + 1 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]
योग

उत्तर

\[\int\frac{dx}{x\left( x^6 + 1 \right)}\]


\[ = \int\frac{x^5 dx}{x^6 \left( x^6 + 1 \right)}\]
\[\text{ let }x^6 = t\]
\[ \Rightarrow 6 x^5 dx = dt\]


\[ \Rightarrow x^5 dx = \frac{dt}{6}\]
\[Now, \int\frac{dx}{x^6 \left( x^6 + 1 \right)}\]
\[ = \frac{1}{6}\int\frac{dt}{t\left( t + 1 \right)}\]
\[ = \frac{1}{6}\int\frac{dt}{t^2 + t}\]
\[ = \frac{1}{6}\int\frac{dt}{t^2 + t + \frac{1}{4} - \frac{1}{4}}\]
\[ = \frac{1}{6}\int\frac{dt}{\left( t + \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}\]
\[ = \frac{1}{6} \times \frac{1}{2 \times \frac{1}{2}} \text{ log  }\left| \frac{t + \frac{1}{2} - \frac{1}{2}}{t + \frac{1}{2} + \frac{1}{2}} \right| + C\]
\[ = \frac{1}{6} \text{ log }  \left| \frac{t}{t + 1} \right| + C\]
\[ = \frac{1}{6} \text{ log  }\left| \frac{x^6}{x^6 + 1} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.16 [पृष्ठ ९०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.16 | Q 11 | पृष्ठ ९०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \left( 3x + 4 \right)^2 dx\]

` ∫   cos  3x   cos  4x` dx  

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int\frac{1}{1 + \tan x} dx =\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int \tan^3 x\ dx\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×