हिंदी

∫ X 3 ( 1 + X 2 ) 2 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]
योग

उत्तर

\[\text{ Let  I } = \int\frac{x^3}{\left( 1 + x^2 \right)^2}\text{ dx }\]
\[ = \int\frac{x^2 \times x}{\left( 1 + x^2 \right)^2}\text{ dx }\]
\[\text{  Putting 1 + x}^2 = t \]
\[ \Rightarrow x^2 = t - 1\]
\[ \Rightarrow 2x\text{ dx } = dt\]
\[ \Rightarrow \text{  x dx }= \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int\frac{\left( t - 1 \right)}{t^2}dt\]
\[ = \frac{1}{2}\int\left( \frac{1}{t} - \frac{1}{t^2} \right)\text{ dt }\]
\[ = \frac{1}{2}\int\frac{dt}{t} - \frac{1}{2}\int t^{- 2} \text{ dt }\]
\[ = \frac{1}{2} \text{ ln} \left| t \right| - \frac{1}{2}\left[ \frac{t^{- 2 + 1}}{- 2 + 1} \right] + C\]
\[ = \frac{1}{2} \text{ ln } \left| t \right| + \frac{1}{2t} + C\]
\[ = \frac{1}{2} \text{  ln }\left| 1 + x^2 \right| + \frac{1}{2 \left( 1 + x^2 \right)} + C...... \left( \because t = 1 + x^2 \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 35 | पृष्ठ २०३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int \sin^4 2x\ dx\]

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int {cosec}^4 2x\ dx\]


\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×