हिंदी

∫ 1 Sin X + √ 3 Cos X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]
योग

उत्तर

\[\text{ Let I }= \int \frac{1}{\sin x + \sqrt{3} \cos x}dx\]
\[\text{ Putting  sin x} = \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \text{ and }\cos x = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]
\[ \Rightarrow I = \int \frac{1}{\frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} + \sqrt{3}\frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}}dx\]
\[ = \int \frac{1 + \tan^2 \frac{x}{2}}{2 \tan \frac{x}{2} + \sqrt{3} - \sqrt{3} \tan^2 \frac{x}{2}}dx\]
\[ = \int\frac{\sec^2 \frac{x}{2}}{- \sqrt{3} \tan^2 \frac{x}{2} + 2 \tan \frac{x}{2} + \sqrt{3}}dx\]

\[\text{ Let }\tan \frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2} \text{ sec}^2 \frac{x}{2}dx = dt\]
\[ \Rightarrow \sec^2 \frac{x}{2}dx = 2dt\]
\[ \therefore I = 2\int \frac{dt}{- \sqrt{3} t^2 + 2t + \sqrt{3}}\]
\[ = - \frac{2}{\sqrt{3}}\int \frac{dt}{t^2 - \frac{2}{\sqrt{3}}t - 1}\]
\[ = - \frac{2}{\sqrt{3}}\int\frac{dt}{t^2 - \frac{2}{\sqrt{3}}t + \left( \frac{1}{\sqrt{3}} \right)^2 - \left( \frac{1}{\sqrt{3}} \right)^2 - 1}\]
\[ = - \frac{2}{\sqrt{3}}\int \frac{dt}{\left( t - \frac{1}{\sqrt{3}} \right)^2 - \left( \frac{2}{\sqrt{3}} \right)^2}\]
\[ = - \frac{2}{\sqrt{3}} \times \frac{1}{2\frac{2}{\sqrt{3}}}\text{ log      }\left| \frac{t - \frac{1}{\sqrt{3}} - \frac{2}{\sqrt{3}}}{t - \frac{1}{\sqrt{3}} + \frac{2}{\sqrt{3}}} \right| + C\]

\[= - \frac{1}{2}\text{ log }\left| \frac{t - \frac{3}{\sqrt{3}}}{t + \frac{1}{\sqrt{3}}} \right| + C\]
\[ = - \frac{1}{2}\text{ log }\left| \frac{\sqrt{3}t - 3}{\sqrt{3}t + 1} \right| + C\]
\[ = \frac{1}{2}\text{ log }\left| \frac{\sqrt{3}t + 1}{\sqrt{3}t - 3} \right| + C\]
\[ = \frac{1}{2}\text{ log }\left| \frac{\sqrt{3}\tan\frac{x}{2} + 1}{\sqrt{3}\tan\frac{x}{2} - 3} \right| + C\]
\[or, \frac{1}{2}\text{ log }\left| \frac{1 + \sqrt{3}\tan\frac{x}{2}}{3 - \sqrt{3}\tan\frac{x}{2}} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.23 [पृष्ठ ११७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.23 | Q 12 | पृष्ठ ११७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int \sin^2 \frac{x}{2} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int\frac{1}{x^4 - 1} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int \cot^4 x\ dx\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×