Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{We have}, \]
\[I = \int \cos^{- 1} \left( 1 - 2 x^2 \right)dx\]
\[\text{ Putting x }= \sin \theta\]
\[ \Rightarrow dx = \cos \text{ θ dθ}\]
\[ \therefore I = \int \cos^{- 1} \left( 1 - 2 \sin^2 \theta \right) \cos \text{ θ dθ}\]
\[ = \int \cos^{- 1} \left( \cos 2\theta \right) \cos \text{ θ dθ}\]
\[ = 2\int \theta_I \text {cos}_{II} \text{ θ dθ}\]
\[ = 2\left[ \theta \sin \theta - \int1 \sin \text{ θ dθ}\right]\]
\[ = 2\left[ \theta \sin \theta + \cos \theta \right] + C\]
\[ = 2\left[ \sin^{- 1} x \times x + \sqrt{1 - x^2} \right] + C\]
\[ = 2\left[ x \sin^{- 1} x + \sqrt{1 - x^2} \right] + C\]
APPEARS IN
संबंधित प्रश्न
\[\int \tan^2 \left( 2x - 3 \right) dx\]
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`