हिंदी

∫ 1 4 X 2 + 12 X + 5 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]
योग

उत्तर

\[\int\frac{dx}{4 x^2 + 12x + 5}\]
\[ = \frac{1}{4}\int\frac{dx}{x^2 + 3x + \frac{5}{4}}\]
\[ = \frac{1}{4}\int\frac{dx}{x^2 + 3x + \left( \frac{3}{2} \right)^2 - \left( \frac{3}{2} \right)^2 + \frac{5}{4}}\]
\[ = \frac{1}{4}\int\frac{dx}{\left( x + \frac{3}{2} \right)^2 - \frac{9}{4} + \frac{5}{4}}\]
\[ = \frac{1}{4}\int\frac{dx}{\left( x + \frac{3}{2} \right)^2 - 1^2}\]
\[\text{ let x} + \frac{3}{2} = t\]
\[ \Rightarrow dx = dt\]
\[Now, \frac{1}{4}\int\frac{dx}{\left( x + \frac{3}{2} \right)^2 - 1^2}\]
\[ = \frac{1}{4}\int\frac{dx}{t^2 - 1^2}\]
\[ = \frac{1}{4} \times \frac{1}{2 \times 1} \text{ log }\left| \frac{t - 1}{t + 1} \right| + C\]
\[ = \frac{1}{8} \text{ log }\left| \frac{x + \frac{3}{2} - 1}{x + \frac{3}{2} + 1} \right| + C\]
\[ = \frac{1}{8} \text{ log }\left| \frac{x + \frac{1}{2}}{x + \frac{5}{2}} \right| + C\]
\[ = \frac{1}{8} \text{ log }\left| \frac{2x + 1}{2x + 5} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.15 [पृष्ठ ८६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.15 | Q 1 | पृष्ठ ८६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int \cot^6 x \text{ dx }\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int \cot^4 x\ dx\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×