Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{dx}{4 x^2 + 12x + 5}\]
\[ = \frac{1}{4}\int\frac{dx}{x^2 + 3x + \frac{5}{4}}\]
\[ = \frac{1}{4}\int\frac{dx}{x^2 + 3x + \left( \frac{3}{2} \right)^2 - \left( \frac{3}{2} \right)^2 + \frac{5}{4}}\]
\[ = \frac{1}{4}\int\frac{dx}{\left( x + \frac{3}{2} \right)^2 - \frac{9}{4} + \frac{5}{4}}\]
\[ = \frac{1}{4}\int\frac{dx}{\left( x + \frac{3}{2} \right)^2 - 1^2}\]
\[\text{ let x} + \frac{3}{2} = t\]
\[ \Rightarrow dx = dt\]
\[Now, \frac{1}{4}\int\frac{dx}{\left( x + \frac{3}{2} \right)^2 - 1^2}\]
\[ = \frac{1}{4}\int\frac{dx}{t^2 - 1^2}\]
\[ = \frac{1}{4} \times \frac{1}{2 \times 1} \text{ log }\left| \frac{t - 1}{t + 1} \right| + C\]
\[ = \frac{1}{8} \text{ log }\left| \frac{x + \frac{3}{2} - 1}{x + \frac{3}{2} + 1} \right| + C\]
\[ = \frac{1}{8} \text{ log }\left| \frac{x + \frac{1}{2}}{x + \frac{5}{2}} \right| + C\]
\[ = \frac{1}{8} \text{ log }\left| \frac{2x + 1}{2x + 5} \right| + C\]
APPEARS IN
संबंधित प्रश्न
` ∫ {cosec x} / {"cosec x "- cot x} ` dx
Write a value of
\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]
\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]