हिंदी

∫ E X ( Cot X + Log Sin X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int e^x \left( \cot x + \log \sin x \right) dx\]
योग

उत्तर

\[\text{ Let I }= \int e^x \left( \cot x + \log \sin x \right)dx\]

\[\text{ Here,} f(x) = \log \sin x Put e^x f(x) = t\]

\[ \Rightarrow f'(x) = \cot x\]

\[\text{ let e}^x \log \sin x = t\]

\[\text{ Diff   both  sides w . r . t x}\]

\[ e^x \text{ log } \left( \sin x \right) + e^x \times \frac{1}{\sin x} \times \cos x = \frac{dt}{dx}\]

\[ \Rightarrow \left[ e^x \text{ log}\left( \sin x \right) + e^x \cot x \right]dx = dt\]

\[ \Rightarrow e^x \left( \cot x + \text{ log }\sin x \right)dx = dt\]

\[ \therefore \int e^x \left( \cot x + \log \sin x \right)dx = \int dt\]

\[ = t + C\]

\[ = e^x \log \sin x + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.26 [पृष्ठ १४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.26 | Q 9 | पृष्ठ १४३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int x^2 \text{ cos x dx }\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int x \sin^3 x\ dx\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×