Advertisements
Advertisements
प्रश्न
`int 1/(sin x - sqrt3 cos x) dx`
योग
उत्तर
Given I = `int 1/(sin x - sqrt3 cos x) dx`
Let 1 = r cos θ and √3 = r sin θ
r = `sqrt(3 + 1) = 2`
And tan θ = √3 → θ = `pi/3`
=> `int 1/(sin x - sqrt3 cos x) dx = int 1/(rcos theta sin x - r sin theta cos x) dx`
= `1/r int 1/(sin (x - theta))dx`
= `1/r int cosec(x - theta)dx`
We know that `int cosec x dx = log|tan (x/2 - pi/6)| + c`
`1/2 log |tan(x/2 - pi/6)| + c`
∴ I = `int 1/(sinx - sqrt3 cos x) dx`
`1/2 log |tan (x/2 - pi/6)| + c`
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]
\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]
\[\int\frac{\sin^2 x}{1 + \cos x} \text{dx} \]
If f' (x) = x + b, f(1) = 5, f(2) = 13, find f(x)
\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]
\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]
\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]
\[\int \sin^2 \frac{x}{2} dx\]
\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\]
\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]
` ∫ {sec x "cosec " x}/{log ( tan x) }` dx
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]
\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
` ∫ tan^3 x sec^2 x dx `
\[\int {cosec}^4 \text{ 3x } \text{ dx } \]
\[\int\frac{x^2 - 1}{x^2 + 4} dx\]
\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
\[\int2 x^3 e^{x^2} dx\]
\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]
\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx }\]
\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{ dx }\]
\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]
\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]
\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]
\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]
\[\int x \sin^5 x^2 \cos x^2 dx\]
\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int \tan^{- 1} \sqrt{x}\ dx\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]