Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{dx}{\sqrt{8 + 3x - x^2}}\]
\[ \Rightarrow \int\frac{dx}{\sqrt{8 - \left( x^2 - 3x \right)}}\]
\[ \Rightarrow \int\frac{dx}{\sqrt{8 - \left( x^2 - 3x + \left( \frac{3}{2} \right)^2 - \left( \frac{3}{2} \right)^2 \right)}}\]
\[ \Rightarrow \int\frac{dx}{\sqrt{8 - \left( x - \frac{3}{2} \right)^2 + \frac{9}{4}}}\]
\[ \Rightarrow \int\frac{dx}{\sqrt{\left( \frac{\sqrt{41}}{2} \right)^2 - \left( x - \frac{3}{2} \right)^2}}\]
\[ \Rightarrow \sin^{- 1} \left( \frac{x - \frac{3}{2}}{\frac{\sqrt{41}}{2}} \right) + C\]
\[ \Rightarrow \sin^{- 1} \left( \frac{2x - 3}{\sqrt{41}} \right) + C\]
APPEARS IN
संबंधित प्रश्न
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
\[\int {cosec}^4 2x\ dx\]
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]