हिंदी

∫ X ( X 2 + 2 X + 2 ) √ X + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]
योग

उत्तर

\[\text{ We  have,} \]
\[I = \int \frac{x \text{ dx}}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}}\]
\[ = \int \frac{x \text{ dx}}{\left[ \left( x + 1 \right)^2 + 1 \right] \sqrt{x + 1}}\]
\[\text{ Putting  x }+ 1 = t^2 \]
\[ \Rightarrow x = t^2 - 1\]
\[\text{ Diff both  sides}\]
\[dx = 2t \text{ dt}\]
\[ \therefore I = \int \frac{\left( t^2 - 1 \right)2t dt}{\left[ \left( t^2 \right)^2 + 1 \right] t}\]
\[ = 2\int \frac{\left( t^2 - 1 \right)dt}{t^4 + 1}\]
\[\text{Dividing numerator and denominator by} \text{ t}^2 \]
\[I = 2\left( \frac{1 - \frac{1}{t^2}}{t^2 + \frac{1}{t^2}} \right)dt\]

\[= 2\int\frac{\left( 1 - \frac{1}{t^2} \right)dt}{t^2 + \frac{1}{t^2} + 2 - 2}\]
\[ = 2\int \frac{\left( 1 - \frac{1}{t^2} \right)dt}{\left( t + \frac{1}{t} \right)^2 - \left( \sqrt{2} \right)^2}\]
\[\text{ Putting  t }+ \frac{1}{t} = p\]
\[ \Rightarrow \left( 1 - \frac{1}{t^2} \right)dt = dp\]
\[I = 2\int \frac{dp}{p^2 - \left( \sqrt{2} \right)^2}\]
\[ = 2 \times \frac{1}{2\sqrt{2}}\text{ log} \left| \frac{p - \sqrt{2}}{p + \sqrt{2}} \right| + C\]
\[ = \frac{1}{\sqrt{2}}\text{ log }\left| \frac{p - \sqrt{2}}{P + \sqrt{2}} \right| + C\]
\[ = \frac{1}{\sqrt{2}}\text{ log} \left| \frac{t + \frac{1}{t} - \sqrt{2}}{t + \frac{1}{t} + \sqrt{2}} \right| + C\]
\[ = \frac{1}{\sqrt{2}}\text{ log} \left| \frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1} \right| + C\]
\[ = \frac{1}{\sqrt{2}}\text{ log }\left| \frac{x + 1 - \sqrt{2\left( x + 1 \right)} + 1}{x + 1 + \sqrt{2\left( x + 1 \right)} + 1} \right| + C\]
\[ = \frac{1}{\sqrt{2}}\text{ log} \left| \frac{\left( x + 2 \right) - \sqrt{2\left( x + 1 \right)}}{\left( x + 2 \right) + \sqrt{2\left( x + 1 \right)}} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.32 [पृष्ठ १९६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.32 | Q 7 | पृष्ठ १९६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

` ∫   tan   x   sec^4  x   dx  `


\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int \sin^7 x  \text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×