Advertisements
Advertisements
प्रश्न
\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]
योग
उत्तर
\[\text{ Let I }= \int\left( \frac{\sin x + \cos x}{\sqrt{\sin 2 x}} \right)dx\]
\[\text{ Putting sin x - cos x = t }\]
\[ \Rightarrow \left( \cos x + \sin x \right)dx = dt\]
\[\text{ Also} \left( \text{ sin x} - \cos x \right)^2 = t^2 \]
\[ \Rightarrow \sin^2 x + \cos^2 x - 2 \sin x \cos x = t^2 \]
\[ \Rightarrow 1 - t^2 = \text{ sin }\left( 2x \right)\]
\[ \therefore I = \int\frac{dt}{\sqrt{1 - t^2}}\]
\[ = \sin^{- 1} t + C \left( \int\frac{dt}{\sqrt{a^2 - x^2}} = \sin^{- 1} \frac{x}{a} + C \right)\]
` = \text{ sin}^{- 1} \text{ ( sin x - cos x }) + C ( ∵ t = sin x - cos x ) `
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]
\[\int\left( \sec^2 x + {cosec}^2 x \right) dx\]
\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]
\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]
\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]
\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]
` = ∫ root (3){ cos^2 x} sin x dx `
\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]
\[\int \sin^7 x \text{ dx }\]
\[\int\frac{1}{x^2 + 6x + 13} dx\]
\[\int\frac{x^2}{x^6 + a^6} dx\]
\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]
\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]
\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]
`int 1/(cos x - sin x)dx`
\[\int x^2 \cos 2x\ \text{ dx }\]
\[\int x \cos^2 x\ dx\]
\[\int x^3 \cos x^2 dx\]
\[\int\cos\sqrt{x}\ dx\]
\[\int {cosec}^3 x\ dx\]
\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]
\[\int x^2 \tan^{- 1} x\text{ dx }\]
\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]
\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]
\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{1}{1 + \tan x} dx =\]
\[\int\frac{x^3}{x + 1}dx\] is equal to
\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
\[\int x\sqrt{2x + 3} \text{ dx }\]
\[\int \sin^3 x \cos^4 x\ \text{ dx }\]
\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]
\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]
\[\int \left( \sin^{- 1} x \right)^3 dx\]
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]