हिंदी

∫ X Cos 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int x \cos^2 x\ dx\]
योग

उत्तर

\[\int x \cos^2 x dx\]
`  " Taking x as the first function and cos"^2 x " as the second function ." `

\[ = x\int\frac{1 + \cos 2x}{2}dx - \int\left\{ \frac{d}{dx}\left( x \right)\int\frac{1 + \cos 2x}{2}dx \right\}dx\]
\[ = \frac{x}{2}\left[ x + \frac{\sin2x}{2} \right] - \int\frac{1}{2}\left( x + \frac{\sin2x}{2} \right)dx\]
\[ = \frac{x}{2}\left[ x + \frac{\sin2x}{2} \right] - \left[ \frac{x^2}{4} - \frac{\cos2x}{8} \right] + C\]
\[ = \frac{x^2}{2} + \frac{x \sin2x}{2} - \frac{x^2}{4} + \frac{\cos2x}{8} + C\]
\[ = \frac{x^2}{4} + \frac{x \sin2x}{2} + \frac{\cos2x}{8} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.25 | Q 13 | पृष्ठ १३३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int \sin^4 2x\ dx\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×