हिंदी

∫ √ 1 − Sin X 1 + Cos X E − X / 2 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]
योग

उत्तर

\[\text{We have}, \]

\[I = \int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- \frac{x}{2}} \text{ dx }\]

\[ = \int\left( \frac{\sqrt{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} - 2 \sin \frac{x}{2} \cos \frac{x}{2}}}{1 + \cos x} \right) e^{- \frac{x}{2}} \text{ dx }\]

\[ = \int\frac{\sqrt{\left( \cos \frac{x}{2} - \sin \frac{x}{2} \right)^2} e^{- \frac{x}{2}}}{2 \cos^2 \frac{x}{2}} \text{ dx }\]

\[ = \int\frac{\cos \frac{x}{2} - \sin \frac{x}{2}}{2 \cos^2 \frac{x}{2}} e^{- \frac{x}{2}} \text{ dx }\]

\[ = \frac{1}{2}\int\left( \sec \frac{x}{2} - \tan \frac{x}{2} \sec \frac{x}{2} \right) e^{- \frac{x}{2}} \text{ dx }\]

\[\text{ Let e}^{- \frac{x}{2}} \sec \left( \frac{x}{2} \right) = t\]

\[ \Rightarrow \left[ e^{- \frac{x}{2}} \left( \sec \frac{x}{2} \tan \frac{x}{2} \times \frac{1}{2} \right) - e^{- \frac{x}{2}} \frac{\sec \left( \frac{x}{2} \right)}{2} \right] dx = dt\]

\[ \Rightarrow \frac{1}{2}\left( \sec \frac{x}{2} \tan \frac{x}{2} - \sec \frac{x}{2} \right) e^{- \frac{x}{2}} dx = dt\]

\[ \therefore I = - \int dt\]

\[ = - t + C\]

\[ = - e^{- \frac{x}{2}} \sec \left( \frac{x}{2} \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 119 | पृष्ठ २०५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

`int 1/(cos x - sin x)dx`

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int \tan^4 x\ dx\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×