Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{We have}, \]
\[I = \int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- \frac{x}{2}} \text{ dx }\]
\[ = \int\left( \frac{\sqrt{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} - 2 \sin \frac{x}{2} \cos \frac{x}{2}}}{1 + \cos x} \right) e^{- \frac{x}{2}} \text{ dx }\]
\[ = \int\frac{\sqrt{\left( \cos \frac{x}{2} - \sin \frac{x}{2} \right)^2} e^{- \frac{x}{2}}}{2 \cos^2 \frac{x}{2}} \text{ dx }\]
\[ = \int\frac{\cos \frac{x}{2} - \sin \frac{x}{2}}{2 \cos^2 \frac{x}{2}} e^{- \frac{x}{2}} \text{ dx }\]
\[ = \frac{1}{2}\int\left( \sec \frac{x}{2} - \tan \frac{x}{2} \sec \frac{x}{2} \right) e^{- \frac{x}{2}} \text{ dx }\]
\[\text{ Let e}^{- \frac{x}{2}} \sec \left( \frac{x}{2} \right) = t\]
\[ \Rightarrow \left[ e^{- \frac{x}{2}} \left( \sec \frac{x}{2} \tan \frac{x}{2} \times \frac{1}{2} \right) - e^{- \frac{x}{2}} \frac{\sec \left( \frac{x}{2} \right)}{2} \right] dx = dt\]
\[ \Rightarrow \frac{1}{2}\left( \sec \frac{x}{2} \tan \frac{x}{2} - \sec \frac{x}{2} \right) e^{- \frac{x}{2}} dx = dt\]
\[ \therefore I = - \int dt\]
\[ = - t + C\]
\[ = - e^{- \frac{x}{2}} \sec \left( \frac{x}{2} \right) + C\]
APPEARS IN
संबंधित प्रश्न
If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]